Skip to main content
Log in

Arbuscular mycorrhizas and ectomycorrhizas of Uapaca bojeri L. (Euphorbiaceae): sporophore diversity, patterns of root colonization, and effects on seedling growth and soil microbial catabolic diversity

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The main objectives of this study were (1) to describe the diversity of mycorrhizal fungal communities associated with Uapaca bojeri, an endemic Euphorbiaceae of Madagascar, and (2) to determine the potential benefits of inoculation with mycorrhizal fungi [ectomycorrhizal and/or arbuscular mycorrhizal (AM) fungi] on the growth of this tree species and on the functional diversity of soil microflora. Ninety-four sporophores were collected from three survey sites. They were identified as belonging to the ectomycorrhizal genera Afroboletus, Amanita, Boletus, Cantharellus, Lactarius, Leccinum, Rubinoboletus, Scleroderma, Tricholoma, and Xerocomus. Russula was the most frequent ectomycorrhizal genus recorded under U. bojeri. AM structures (vesicles and hyphae) were detected from the roots in all surveyed sites. In addition, this study showed that this tree species is highly dependent on both types of mycorrhiza, and controlled ectomycorrhization of this Uapaca species strongly influences soil microbial catabolic diversity. These results showed that the complex symbiotic status of U. bojeri could be managed to optimize its development in degraded areas. The use of selected mycorrhizal fungi such the Scleroderma Sc1 isolate in nursery conditions could be of great interest as (1) this fungal strain is very competitive against native symbiotic microflora, and (2) the fungal inoculation improves the catabolic potentialities of the soil microflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96

    Article  CAS  Google Scholar 

  • Bâ AM, Thoen D (1990) First synthesis of ectomycorrhizas between Afzelia africana Sm. (Caesalpinioideae) and native fungi from West Africa. New Phytol 114:99–103

    Article  Google Scholar 

  • Bâ AM, Garbaye J, Dexheimer J (1991) Influence of fungal propagules during the early stage of the time sequence of ectomycorrhizal colonization on Afzelia africana seedlings. Can J Bot 69:2442–2447

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett MC, Piche Y, Peterson RL (1985) A developmental study of the early stages in vesicular-arbuscular mycorrhizal formation. Can J Bot 63:184–194

    Article  Google Scholar 

  • Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol Rev 24:601–614

    Article  CAS  PubMed  Google Scholar 

  • Buyck B, Thoen D, Walting R (1996) Ectomycorrhizal fungi of the Guinea–Congo region. Proc R Soc Edinb 104:313–333

    Google Scholar 

  • Casper BB, Cahill JF (1998) Population-level responses to nutrient heterogeneity and density by Abutilon theophrasti (Malvaceae): an experimental neighbourhood approach. Am J Bot 85:1680–1687

    Article  CAS  PubMed  Google Scholar 

  • Cazares E, Trappe JM (1993) Vesicular endophytes in roots of the Pinaceae. Mycorrhiza 2:153–156

    Article  Google Scholar 

  • Chilvers GA, Lapeyrie FF, Horan DP (1987) Ectomycorrhizal vs endomycorrhizal fungi within the same root system. New Phytol 107:441–448

    Article  Google Scholar 

  • Culhane AC, Perriere G, Considine EC, Cotter TG, Higgins DG (2002) Between-group analysis of microarray data. Bioinformatics 18:1600–1608

    Article  CAS  PubMed  Google Scholar 

  • Deacon JW, Donaldson SJ, Last FT (1983) Sequences and interactions of mycorrhizal fungi on birch. Plant Soil 71:257–262

    Article  Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the metabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320

    Article  CAS  Google Scholar 

  • Degens BP, Vojvodic-Vukovic M (1999) A sampling strategy to assess the effects of land use on microbial functional diversity in soils. Aust J Soil Res 37:593–601

    Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153

    Article  CAS  Google Scholar 

  • Dhillion SS (1994) Ectomycorrhizae, arbuscular mycorrhizae, and Rhizoctonia sp. of alpine and boreal Salix spp. in Norway. Arct Alp Res 26:304–307

    Article  Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255

    Article  Google Scholar 

  • Diédhiou AG, Guèye O, Diabaté M, Prin Y, Duponnois R, Dreyfus B, Bâ AM (2005) Contrasting responses to ectomycorrhizal inoculation in seedlings of six tropical African tree species. Mycorrhiza 16:11–17

    Article  PubMed  Google Scholar 

  • Dolédec S, Chessel D (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique I-Description d’un plan d’observations complet par projection de variables. Acta Oecol 8:403–426

    Google Scholar 

  • Ducousso M, Béna G, Bourgeois C, Buyck B, Eyssartier G, Vincelette M, Rabevohitra R, Randrihasipara L, Dreyfus B, Prin Y (2004) The last common ancestor of Sarcolonaceae and Asian dipterocarp trees was ectomycorrhizal before the India–Madagascar separation, about 88 million years ago. Mol Ecol 13:231–236

    Article  CAS  PubMed  Google Scholar 

  • Duponnois R, Garbaye J (1991) Techniques for controlled synthesis of the Douglas fir—Laccaria laccata ectomycorrhizal symbiosis. Ann For Sci 48:239–251

    Article  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  CAS  PubMed  Google Scholar 

  • Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17:239–251

    Article  Google Scholar 

  • Duponnois R, Diédhiou S, Chotte JL, Sy MO (2003) Relative importance of the endomycorrhizal and/or ectomycorrhizal associations in Allocasuarina and Casuarina genera. Can J Microbiol 49(4):281–287

    Article  CAS  PubMed  Google Scholar 

  • Duponnois R, Founoune H, Masse D, Pontanier R (2005) Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. For Ecol Manag 207:351–362

    Article  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in soil environment. Can J Microbiol 42:881–895

    Article  CAS  Google Scholar 

  • Egerton-Warburton L, Allen MF (2001) Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290

    Article  CAS  PubMed  Google Scholar 

  • Elliot LF, Lynch JM (1994) Biodiversity and soil resilience. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford, UK, pp 353–364

    Google Scholar 

  • Estaun V, Save R, Biel C (1997) AM inoculation as a biological tool to improve plant re-vegetation of a disturbed soil with Rosmarinus officinalis under semi-arid conditions. Appl Soil Ecol 6:223–229

    Article  Google Scholar 

  • Farley RA, Fitter AH (1999) The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849–859

    Article  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM (2002a) Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea in glasshouse conditions (A. Cunn. ex G. Don). Ann For Sci 59:93–98

    Article  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM, Sall S, Branger I, Lorquin J, Neyra M, Chotte JL (2002b) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus albus. New Phytol 153:81–89

    Article  Google Scholar 

  • Franson RI, Bethlenfalvay GJ (1989) Infection unit method of vesicular-arbuscular mycorrhizal propagule determination. Soil Sci Soc Am J 53:754–756

    Article  Google Scholar 

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir Laccaria bicolor Mycorrhizosphere. Appl Environ Microbiol 63:1852–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JP, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Green GM, Sussman RW (1990) Deforestation history of the eastern rain forests of Madagascar from satellite images. Science 248:212–215

    Article  CAS  PubMed  Google Scholar 

  • Heim R (1970) Particularités remarquables des Russules tropicales Pelliculariae lilliputiennes: Les complexes annulata et radicans. Bull Soc Mycol France 86:59–77

    Google Scholar 

  • Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infrared gas analysis. Plant Soil 116:77–81

    Article  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Jasper DA, Abbot LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118:471–476

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rock: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  CAS  PubMed  Google Scholar 

  • Lapeyrie FF, Chilvers GA (1985) An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol 100:93–104

    Article  Google Scholar 

  • Lebreton JD, Sabatier R, Banco G, Bacou AM (1991) Principal component and correspondence analyses with respect to instrumental variables: an overview of their role in studies of structure-activity and species-environment relationships. In: Devillers J, Karcher W (eds) Applied multivariate analysis in SAR and environmental studies. Kluwer, pp 85–114

  • Lee SS (1998) Root symbiosis and nutrition. In: Appanah S, Turnbull JMA (eds) Review of dipterocarps: taxonomy, ecology and sylviculture. CIFOR, Bogor, Indonesia, pp 99–114

    Google Scholar 

  • Lee SS, Alexander IJ, Watling R (1997). Ectomycorrhizas and putative ectomycorrhizal fungi of Shorea leprosula Miq. (Dipterocarpaceae). Mycorrhiza 7:63–81

    Article  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Lodge DJ, Wentworth TR (1990) Negative associations among VA-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root system. Oikos 57:347–356

    Article  Google Scholar 

  • Lowry PPII, Schatz GE, Phillipson PB (1997) The classification of natural and anthropogenic vegetation in Madagascar. In: Goodman SM, Patterson BD (eds) Natural change and human impact in Madagascar. Smithsonian Institute Press, Washington, DC, pp 93–123

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Book  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1991) The practical significance of ectomycorrhizae in forest establishment. Ecophysiology of forest trees. Marcus Wallenberg Found Symp Proc 7:54–90

    Google Scholar 

  • McGee P (1989) Variation in propagule numbers of vesicular-arbuscular mycorrhizal fungi in a semi-arid soil. New Phytol 92:28–33

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical applications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, NY, USA, pp 357–423

    Google Scholar 

  • Molina R, Myrold D, Li CY (1994) Root symbiosis of red alder: technological opportunities for enhanced regeneration and soil improvement. In: Hibbs DE, DeBell DS, Tarrant RF (eds) The biology and management of red alder. Oregon State University Press, Corvallis, OR, pp 23–46

    Google Scholar 

  • Moyersoen B, Fitter A (1999) Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8:247–253

    Article  Google Scholar 

  • Ochs M (1996) Influence of humidified and non-humidified natural organic compounds on mineral dissolution. Chem Geol 132:119–124

    Article  CAS  Google Scholar 

  • Olsen SR, Cole, CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, vol 939. US Department of Agriculture, Washington, DC, p 19

  • Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989) Bootstrapping in ecosystems. Bioscience 39:230–237

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular fungi for rapid assessment of infections. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotropism. Biosystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Plenchette C., Declerck S, Diop T, Strullu DG (1996) Infectivity of monoaxenic subcultures of the AM fungus Glomus versiforme associated with Ri-TDNA transformed root. Appl Microbiol Biotechnol 46:545–548

    Article  CAS  Google Scholar 

  • Rao CR (1964) The use and interpretation of principal component analysis in applied research. Sankhya A 26:329–359

    Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in “lower” land plants. Philos Trans R Soc Lond Ser B-Biol Sci 355:815–830

    Article  CAS  Google Scholar 

  • Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riviere T, Natarajan K, Dreyfus B (2006) Spatial distribution of ectomycorrhizal basidiomycete Russula subsect. Foetentinae populations in a primary dipterocarp rainforest. Mycorrhiza 16:143–148

    Article  PubMed  Google Scholar 

  • Sanon K, Bâ AM, Dexheimer J (1997) Mycorrhizal status of some fungi fruiting beneath indigenous trees in Burkina Faso. For Ecol Manag 98:61–69

    Article  Google Scholar 

  • Schreiner RP, Mihara KL, McDaniel KL, Bethlenfalvay GJ (2003) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209

    Article  Google Scholar 

  • Smith S, Read J (1997) Mycorrhizal symbiosis, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • Thoen D, Bâ AM (1989) Ectomycorrhizae and putative ectomycorrhizal fungi of Afzelia africana and Uapaca guineensis in Southern Senegal. New Phytol 113:549–559

    Article  Google Scholar 

  • Vagen TG, Andrianorofanomezana MAA, Andrianorofanomezana S (2006a) Deforestation and cultivation effects on characteristics of oxisols in the highlands of Madagascar. Geoderma 131:190–200

    Article  CAS  Google Scholar 

  • Vagen TG, Walsh MG, Shepherd KD (2006b) Stable isotopes for characterisation of trends in soil carbon following deforestaion and land use change in the highlands of Madagascar. Geoderma 135:133–139

    Article  CAS  Google Scholar 

  • Valentine LL, Fieldler TL, Hart AA, Petersen CA, Berninghausen HK, Southworth D (2004) Diversity of ectomycorrhizas associated with Quercus garryana in southern Oregon. Can J Bot 82:123–135

    Article  Google Scholar 

  • van der Hejden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Wardle DA, Giller KE, Barker GM (1999) The regulation and functional significance of soil biodiversity in agro-ecosystems. In: Wood D, Lenné JM (eds) Agrobiodiversity: characterisation, utilisation and management. CABI, London, pp 87–121

    Google Scholar 

  • Watling R, Lee SS (1998) Ectomycorrhizal fungi associated with members of the Dipterocarpaceae in Peninsular Malaysia-II. J Trop For Sci 10:421–430

    Google Scholar 

  • West AW, Sparling GP (1986) Modifications of the substrate-induced respiration method to permit measurements of microbial biomass in soils of differing water contents. J Microbiol Methods 5:177–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Duponnois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanankierana, N., Ducousso, M., Rakotoarimanga, N. et al. Arbuscular mycorrhizas and ectomycorrhizas of Uapaca bojeri L. (Euphorbiaceae): sporophore diversity, patterns of root colonization, and effects on seedling growth and soil microbial catabolic diversity. Mycorrhiza 17, 195–208 (2007). https://doi.org/10.1007/s00572-006-0095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0095-0

Keywords

Navigation