Skip to main content

Advertisement

Log in

Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

In recent years, non-fusion implants to stabilise the lumbar spine have become more and more popular. However, little is known on the load bearing of such dynamic stabilisation systems. In order to investigate the load bearing of discs bridged with rigid and dynamic stabilisation systems, six lumbar cadaver spines were mounted in a spine tester and loaded with pure moments in the three main motion planes. Four different states of the specimens were studied: intact, destabilised, stabilisation with a Dynesys® and stabilisation with an internal fixator. Intradiscal pressure (IDP) measurements were used to assess the load bearing of the bridged disc. In the neutral unloaded position, there were small but not significant differences in disc pressure for the four states of the treated disc (P>0.05). Concerning the disc pressure during the course of loading, both the Dynesys® and internal fixator did significantly reduce the pressure change from neutral to extension in comparison to the intact state (−0.05, −0.04 and +0.24 MPa, respectively) (P<0.05). Compared to the intact state, there was no significant pressure change from neutral to flexion (0.14, 0.15 and 0.18 MPa, respectively) (P>0.05). The devices apparently eliminated the pressure change from neutral to lateral bending (Dynesys 0.01 MPa, Fixator 0.01 MPa and intact 0.24 MPa), but due to large variations in the intact and defect states the differences were not significant (P>0.05). In axial rotation, the pressure change for the internal fixator was reduced compared to the intact state; however, the change was only significant in left axial rotation (P<0.05). The Dynesys® showed no significant differences (P>0.05) in axial rotation. No changes in IDP were seen in the adjacent discs for either the Dynesys or the internal fixator. Our results showed that the IDPs for both devices were similar, but altered compared to the intact disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abe E, Nickel T, Buttermann GR, Lewis JL, Transfeldt EE (1998) Lumbar intradiscal pressure after posterolateral fusion and pedicle screw fixation. Tohoku J Exp Med 186(4):243–253

    Article  PubMed  CAS  Google Scholar 

  2. Adams MA, McMillan DW, Green TP, Dolan P (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 21(4):434–438

    Article  PubMed  CAS  Google Scholar 

  3. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78(6):965–972

    Article  PubMed  CAS  Google Scholar 

  4. Chow DH, Luk KD, Evans JH, Leong JC (1996) Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine 21(5):549–555

    Article  PubMed  CAS  Google Scholar 

  5. Cunningham BW, Kotani Y, McNulty PS, Cappuccino A, McAfee PC (1997) The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine 22(22):2655–2663

    Article  PubMed  CAS  Google Scholar 

  6. Esses SI, Sachs BL, Dreyzin V (1993) Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine 18(15):2231–2238 (discussion 2238–2239)

    Google Scholar 

  7. Freudiger S, Dubois G, Lorrain M (1999) Dynamic neutralisation of the lumbar spine confirmed on a new lumbar spine simulator in vitro. Arch Orthop Trauma Surg 119(3–4):127–132

    Article  PubMed  CAS  Google Scholar 

  8. Grevitt MP, Gardner AD, Spilsbury J, Shackleford IM, Baskerville R, Pursell LM et al (1995) The Graf stabilisation system: early results in 50 patients. Eur Spine J 4(3):169–175 (discussion 135)

    Google Scholar 

  9. Korge A, Nydegger T, Polard JL, Mayer HM, Husson JL (2002) A spiral implant as nucleus prosthesis in the lumbar spine. Eur Spine J 11(Suppl 2):S149–S153

    PubMed  Google Scholar 

  10. Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10(4):314–319

    Article  PubMed  CAS  Google Scholar 

  11. Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13(3):375–377

    Article  PubMed  CAS  Google Scholar 

  12. Lehmann TR, Spratt KF, Tozzi JE, Weinstein JN, Reinarz SJ, el-Khoury GY et al (1987) Long-term follow-up of lower lumbar fusion patients. Spine 12(2):97–104

    Article  PubMed  CAS  Google Scholar 

  13. Link HD (2002) History, design and biomechanics of the LINK SB Charite artificial disc. Eur Spine J 11(Suppl 2):S98–S105

    PubMed  Google Scholar 

  14. Mayer HM, Wiechert K, Korge A, Qose I (2002) Minimally invasive total disc replacement: surgical technique and preliminary clinical results. Eur Spine J 11(Suppl 2):S124–S130

    PubMed  Google Scholar 

  15. McAfee PC, Weiland DJ, Carlow JJ (1991) Survivorship analysis of pedicle spinal instrumentation. Spine 16(Suppl 8):S422–S427

    PubMed  CAS  Google Scholar 

  16. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17(1):66–73

    Article  PubMed  CAS  Google Scholar 

  17. Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19(12):1371–1380

    Article  PubMed  CAS  Google Scholar 

  18. Molz FJ, Partin JI, Kirkpatrick JS (2003) The acute effects of posterior fusion instrumentation on kinematics and intradiscal pressure of the human lumbar spine. J Spinal Disord Tech 16(2):171–179

    PubMed  Google Scholar 

  19. Nachemson A (1966) The load on lumbar disks in different positions of the body. Clin Orthop 45:107–122

    PubMed  CAS  Google Scholar 

  20. Nachemson AL (1981) Disc pressure measurements. Spine 6(1):93–97

    Article  PubMed  CAS  Google Scholar 

  21. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K (1999) Posterior lumbar interbody fusion: a retrospective study of complications after facet joint excision and pedicle screw fixation in 148 cases. Acta Orthop Scand 70(4):329–334

    Article  PubMed  CAS  Google Scholar 

  22. Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine 20(6):743–747

    Article  PubMed  CAS  Google Scholar 

  23. Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37(2):197–204

    Article  PubMed  CAS  Google Scholar 

  24. Quint U, Wilke HJ, Loer F, Claes L (1998) Possibilities for static and dynamic stabilization of the spine in lesions of the anterior and posterior ligament complex. Unfallchirurg 101(9):684–690

    Article  PubMed  CAS  Google Scholar 

  25. Rohlmann A, Neller S, Bergmann G, Graichen F, Claes L, Wilke HJ (2001) Effect of an internal fixator and a bone graft on intersegmental spinal motion and intradiscal pressure in the adjacent regions. Eur Spine J 10(4):301–308

    Article  PubMed  CAS  Google Scholar 

  26. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26(24):E557–E561

    Article  PubMed  CAS  Google Scholar 

  27. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24(23):2468–2474

    Article  PubMed  CAS  Google Scholar 

  28. Schlegel JD, Smith JA, Schleusener RL (1996) Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 21(8):970–981

    Article  PubMed  CAS  Google Scholar 

  29. Schmoelz W, Huber JF, Nydegger T, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16(4):418–423

    PubMed  CAS  Google Scholar 

  30. Seitsalo S, Schlenzka D, Poussa M, Osterman K (1997) Disc degeneration in young patients with isthmic spondylolisthesis treated operatively or conservatively: a long-term follow-up. Eur Spine J 6(6):393–397

    Article  PubMed  CAS  Google Scholar 

  31. Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    PubMed  Google Scholar 

  32. Swanson KE, Lindsey DP, Hsu KY, Zucherman JF, Yerby SA (2003) The effects of an interspinous implant on intervertebral disc pressures. Spine 28(1):26–32

    Article  PubMed  Google Scholar 

  33. Trommsdorff U, Zurbruegg D, Schneider W (2004) Biostability of poly(ethylene-terephthalate) cords used in a spinal implant system. In: Seventh World Biomaterials Congress, Sydney, Australia, p 1364

  34. Trommsdorff U, Zurbruegg D, Stoll TM (2004) In-vivo stability of polycarbonate-urethane with and without contact to an abscess. In: Seventh World Biomaterials Congress, Sydney, Australia, p 337

  35. Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine 20(5):526–531

    CAS  Google Scholar 

  36. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97

    Article  PubMed  CAS  Google Scholar 

  37. Wilke HJ, Kavanagh S, Neller S, Haid C, Claes LE (2001) Effect of a prosthetic disc nucleus on the mobility and disc height of the L4–5 intervertebral disc postnucleotomy. J Neurosurg 95(Suppl 2):208–214

    PubMed  CAS  Google Scholar 

  38. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24(8):755–762

    Article  PubMed  CAS  Google Scholar 

  39. Wilke HJ, Rohlmann A, Neller S, Schultheiss M, Bergmann G, Graichen F et al (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine 26(6):636–642

    Article  PubMed  CAS  Google Scholar 

  40. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154

    Article  PubMed  CAS  Google Scholar 

  41. Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1996) Influence of varying muscle forces on lumbar intradiscal pressure: an in vitro study. J Biomech 29(4):549–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The study was financially supported by the SYNOS Foundation, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Wilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmoelz, W., Huber, J.F., Nydegger, T. et al. Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 15, 1276–1285 (2006). https://doi.org/10.1007/s00586-005-0032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-005-0032-5

Keywords

Navigation