Skip to main content

Advertisement

Log in

The density of nociceptive SP- and CGRP-immunopositive nerve fibers in the dura mater lumbalis of rats is enhanced after laminectomy, even after application of autologous fat grafts

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

A considerable number of patients complain about pain after lumbar surgery. The spinal dura mater has been debated as a possible source of this pain. However, there is no information if laminectomy influences the nociceptive sensory innervation of the dura. Therefore, we quantitatively evaluated the density of SP- and CGRP-immunopositive nerve fibers in the dura mater lumbalis in an animal model of laminectomy. Twelve adult Lewis rats underwent laminectomy, in six of them the exposed dura was covered by an autologous fat graft. Further six animals without surgical treatment served as controls. Six weeks after surgery, the animals were perfused and the lumbar dura was processed immunohistochemically for the detection of CGRP- and SP-containing nerve fibers. In controls, the peptidergic nerve fibers were found predominantly in the ventral but rarely in the dorsal dura mater lumbalis. After laminectomy, the density of SP- and CGRP-immunopositive neurons significantly increased in ventral as well as in dorsal parts of the dura. Axonal spines could be observed in some cases at the site of laminectomy. The application of autologous fat grafts failed to inhibit the significant increase in the density of peptidergic afferents. Thus, we have provided the first evidence that laminectomies induce an increase in the density of putative nociceptive SP- and CGRP-immunopositive neurons in the lumbar dura mater ascribable to an axonal sprouting of fine nerve fibers. This effect was not prevented by using autologous fat grafts. It is conceivable that the neuronal outgrowth of nociceptive afferents is a cause of low back pain observed after lumbar surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed M, Bjurholm A, Kreicbergs A, Schultzberg M (1991) SP- and CGRP-immunoreactive nerve fibers in the rat lumbar spine. Neuroorthopedics 12:19–28

    Google Scholar 

  2. Ahmed M, Bjurholm A, Kreicbergs A, Schultzberg M, Neuropeptide Y (1993) Tyrosine hydroxylase and vasoactive intestinal polypeptide-immunoreactive nerve fibers in the vertebral bodies, discs, dura mater, and spinal ligaments of the rat lumbar spine. Spine 18(2):268–273. doi:10.1097/00007632-199302000-00016

    Article  PubMed  CAS  Google Scholar 

  3. Albers KM, Wright DE, Davis BM (1994) Overexpression of nerve growth factor in epidermis of transgenic mice causes hypertrophy of the peripheral nervous system. J Neurosci 14:1422–1432

    PubMed  CAS  Google Scholar 

  4. Benner B, Ehni G (1978) Spinal arachnoiditis. Spine 3:40–44. doi:10.1097/00007632-197803000-00009

    Article  PubMed  CAS  Google Scholar 

  5. Bernsmann K, Krämer J, Ziozios I, Wehmeier J, Wiese M (2001) Lumbar micro disc surgery with and without autologous fat graft. A prospective randomized trial evaluated with reference to clinical and social factors. Arch Orthop Trauma Surg 121(8):476–480. doi:10.1007/s004020100277

    Article  PubMed  CAS  Google Scholar 

  6. Blikra G (1969) Intradural herniated lumbar disc. J Neurosurg 31(6):676–679

    Article  PubMed  CAS  Google Scholar 

  7. Bogduk N (1992) The sources of low back pain. In: Jayson IV (ed) The lumbar spine and back pain. Churchill Livingston, Edinburgh, pp 61–88

    Google Scholar 

  8. Burton CV (1978) Lumbosacral arachnoiditis. Spine 3:24–30. doi:10.1097/00007632-197803000-00006

    Article  PubMed  CAS  Google Scholar 

  9. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200. doi:10.1038/nature03875

    Article  PubMed  CAS  Google Scholar 

  10. Ceviz A, Arslan A, Ak HE, Inalöz S (1997) The effect of urokinase in preventing the formation of epidural fibrosis and/or leptomeningeal arachnoiditis. Surg Neurol 47(2):124–127. doi:10.1016/S0090-3019(96)00038-9

    Article  PubMed  CAS  Google Scholar 

  11. Cyriax J (1978) Dural pain. Lancet 1(8070):919–921. doi:10.1016/S0140-6736(78)90693-1

    Article  PubMed  CAS  Google Scholar 

  12. Davis BM, Fundin BT, Albers KM, Goodness TP, Cronk KM, Rice FL (1997) Overexpression of nerve growth factor in skin causes preferential increases among innervation to specific sensory targets. J Comp Neurol 387:489–506. doi:10.1002/(SICI)1096-9861(19971103)387:4<489::AID-CNE2>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  13. Diamond J, Foerster A, Holmes M, Coughlin M (1992) Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF. J Neurosci 12:1467–1476

    PubMed  CAS  Google Scholar 

  14. Diamond J, Holmes M, Coughlin M (1992) Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci 12:1454–1466

    PubMed  CAS  Google Scholar 

  15. Dickson A, Avelino A, Cruz F, Ribeiro-da-Silva A (2006) Peptideregic sensory and parasympathetic fiber sprouting in the mucosa of the rat urinary bladder in a chronic model of cyclophosphamide-induced cystitis. Neuroscience 139:671–685. doi:10.1016/j.neuroscience.2005.11.050

    Article  PubMed  CAS  Google Scholar 

  16. DiFazio FA, Nichols JB, Pope MH, Frymoyer JW (1995) The use of expanded polytetrafluoroethylene as an interpositional membrane after lumbar laminectomy. Spine 20(9):986–991. doi:10.1097/00007632-199505000-00002

    Article  PubMed  CAS  Google Scholar 

  17. Edgar MA, Nundy S (1966) Innervation of the spinal dura mater. J Neurol Neurosurg Psychiatry 29:530–534

    Google Scholar 

  18. El-Mahdi MA, Abdel Latif FY, Janko M (1981) The spinal nerve root “innervation”, and a new concept of the clinicopathological interrelations in back pain and sciatica. Neurochirurgia (Stuttg) 24(4):137–141

    CAS  Google Scholar 

  19. Federoff HJ, Grabczyk E, Fishman MC (1988) Dual regulation of GAP-43 gene expression by nerve growth factor and glucocorticoids. J Biol Chem 263(36):19290–19295

    PubMed  CAS  Google Scholar 

  20. Gambardella G, Gervasio O, Zaccone C, Puglisi E (2005) Prevention of recurrent radicular pain after lumbar disc surgery: a prospective study. Acta Neurochir Suppl (Wien) 92:151–154

    Article  CAS  Google Scholar 

  21. Geis A, Rohleder N, Kirschbaum C, Steinbach K, Bauer HW, Anton F (2005) Predicting the failure of disc surgery by a hypofunctional HPA axis: evidence from a prospective study on patients undergoing disc surgery. Pain 114:104–117. doi:10.1016/j.pain.2004.12.007

    Article  CAS  Google Scholar 

  22. Gloster A, Diamond J (1992) Sympathetic nerves in adult rats regenerate normally and restore pilomotor function during an anti-NGF treatment that prevents their collateral sprouting. J Comp Neurol 326:363–374. doi:10.1002/cne.903260305

    Article  PubMed  CAS  Google Scholar 

  23. Gloster A, Diamond J (1995) NGF-dependent and NGF-independent recovery of sympathetic function after chemical sympathectomy with 6-hydroxydopamine. J Comp Neurol 359:586–594. doi:10.1002/cne.903590406

    Article  PubMed  CAS  Google Scholar 

  24. Gorgulu A, Simsek O, Cobanoglu S, Imer M, Parsak T (2004) The effect of epidural free fat graft on the outcome of lumbar disc surgery. Neurosurg Rev 27:181–184. doi:10.1007/s10143-003-0310-9

    Article  PubMed  Google Scholar 

  25. Grelik C, Bennett GJ, Ribeiro-da-Silva A (2005) Autonomic fibre sprouting and changes in nociceptive sensory innervation in the rat lower lip skin following chronic constriction injury. Eur J Neurosci 21(9):2475–2487. doi:10.1111/j.1460-9568.2005.04089.x

    Article  PubMed  CAS  Google Scholar 

  26. Groen GJ, Baljet B, Drukker J (1988) The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir (Wien) 92(1–4):39–46. doi:10.1007/BF01401971

    Article  CAS  Google Scholar 

  27. Harris LW, Purves D (1989) Rapid remodeling of sensory endings in the corneas of living mice. J Neurosci 9(6):2210–2214

    PubMed  CAS  Google Scholar 

  28. Hoyle GW, Graham RM, Finkelstein JB, Nguyen KP, Gozal D, Friedman M (1998) Hyperinnervation of the airways in transgenic mice overexpressing nerve growth factor. Am J Respir Cell Mol Biol 18(2):149–157

    PubMed  CAS  Google Scholar 

  29. Jensen TT, Asmussen K, Berg-Hansen EM, Laurutzen B, Manniche C, Vinterberg H et al (1996) First-time operation for lumbar disc herniation with or without free fat transplantation Prospective triple-blind randomized study with reference to clinical factors and enhanced computed tomographic scan 1 year after operation. Spine 21(9):1072–1076. doi:10.1097/00007632-199605010-00016

    Article  PubMed  CAS  Google Scholar 

  30. Kallakuri S, Cavanaugh J, Blagoev D (1998) An immunohistochemical study of innervation of lumbar spinal dorsal dura and longitudinal ligaments. Spine 23(4):403–411. doi:10.1097/00007632-199802150-00001

    Article  PubMed  CAS  Google Scholar 

  31. Kawamoto K, Matsuda H (2004) Nerve growth factor and wound healing. Prog Brain Res 146:369–384

    Article  PubMed  CAS  Google Scholar 

  32. Keller JT, Marfurt CF (1991) Peptidergic and serotoninergic innervations of the rat dura mater. J Comp Neurol 309:515–534. doi:10.1002/cne.903090408

    Article  PubMed  CAS  Google Scholar 

  33. Kinkelin I, Mötzing S, Koltzenburg M, Bröcker E-B (2000) Increase in NGF content and nerve fiber sprouting in human allergic contact eczema. Cell Tissue Res 302:31–37. doi:10.1007/s004410000202

    Article  PubMed  CAS  Google Scholar 

  34. Kiviluoto O (1976) Use of free fat transplants to prevent epidural scar formation: an experimentsl study. Acta Orthop Scand Suppl 164:73–75

    Google Scholar 

  35. Konnai Y (1994) Nerve innervation of peptidergic fibers in the spinal dura mater of rats. Acta Anat Nipponica 69:89

    Google Scholar 

  36. Konnai Y, Honda T, Sekiguchi Y, Kikuchi S, Sugiura Y (2000) Sensory innervation of the lumbar dura mater passing through the sympathetic trunk in rats. Spine 25(7):776–782. doi:10.1097/00007632-200004010-00004

    Article  PubMed  CAS  Google Scholar 

  37. Kosten TA, Ambrosio E (2002) HPA axis function and drug addictive behaviors: insights from studies with Lewis and Fischer 344 inbred rats. Psychoneuroendocrinology 27(1–2):35–69. doi:10.1016/S0306-4530(01)00035-X

    Article  PubMed  CAS  Google Scholar 

  38. Kuivila TE, Berry JL, Bell GR, Steffee AD (1988) Heparinized materials for control of the formation of the laminectomy membrane in experimental laminectomies in dogs. Clin Orthop Relat Res 236:166–173

    PubMed  Google Scholar 

  39. Kumar R, Berger R, Dunsker S, Keller J (1996) Innervation of the spinal dura: myth or reality? Spine 21(1):18–25. doi:10.1097/00007632-199601010-00004

    Article  PubMed  CAS  Google Scholar 

  40. Langenskiöld A, Kiviluoto O (1976) Prevention of epidural scar formation after operations on the lumbar spine by means of free fat transplants. A preliminary report. Clin Orthop Relat Res 115:92–95

    PubMed  Google Scholar 

  41. Leslie TA, Emson PC, Dowd PM, Woolf CJ (1995) Nerve growth factor contributes to the up-regulation of growth-associated protein 43 and preprotachykinin. A messenger RNAs in primary sensory neurons following peripheral inflammation. Neuroscience 67:753–761. doi:10.1016/0306-4522(95)00101-N

    Article  PubMed  CAS  Google Scholar 

  42. Lindholm D, Hengerer B, Heumann R, Carroll P, Thoenen H (1990) Glucocorticoid hormones negatively regulate nerve growth factor expression in vivo and in cultured rat fibroblasts. Eur J Neurosci 2:795–801. doi:10.1111/j.1460-9568.1990.tb00471.x

    Article  PubMed  Google Scholar 

  43. Loeser J (1985) Pain due to nerve injury. Spine 10:232–235. doi:10.1097/00007632-198504000-00007

    Article  PubMed  CAS  Google Scholar 

  44. Matsuda H, Koyama H, Sato H, Sawada J, Itakura A, Tanaka A et al (1998) Role of nerve growth factor in cutaneous wound healing: accelerating effects in normal and healing-impaired diabetic mice. J Exp Med 187(3):297–306. doi:10.1084/jem.187.3.297

    Article  PubMed  CAS  Google Scholar 

  45. McCarron RF, Wimpee MW, Hudkins PG, Laros GS (1987) The inflammatory effect of nucleus pulposus. A possible element in the pathogenesis of low-back pain. Spine 12(8):760–764. doi:10.1097/00007632-198710000-00009

    Article  PubMed  CAS  Google Scholar 

  46. Mearow KM, Kril Y (1995) Anti-NGF treatment blocks the upregulation of NGF receptor mRNA expression associated with collateral sprouting of rat dorsal root ganglion neurons. Neurosci Lett 184:55–58. doi:10.1016/0304-3940(94)11167-H

    Article  PubMed  CAS  Google Scholar 

  47. Meßlinger K, Hanesch U, Baumgärtel M, Trost B, Schmidt RF (1993) Innervation of the dura mater encephali of cat and rat: ultrastructure and CGRP/SP-like immunoreactivity. Anat Embryol (Berl) 188:219–237

    Google Scholar 

  48. Mosconi T, Krüger L (1996) Fixed-diameter polyethylene cuffs applied to the rat sciatic nerve induce a painful neuropathy: ultrastructural morphometric analysis of axonal alterations. Pain 64(1):37–57. doi:10.1016/0304-3959(95)00077-1

    Article  PubMed  CAS  Google Scholar 

  49. Oaklander AL, North RB (2001) Failed back surgery syndrome. In: Loeser JD (ed) Bonica`s management of pain. Williams & Wilkins, Philadelphia, pp 1540–1549

    Google Scholar 

  50. O’Connor TP, van der Kooy D (1988) Enrichment of a vasoactive neuropeptide (calcitonin gene related peptide) in the trigeminal sensory projection to the intracranial arteries. J Neurosci 8(7):2468–2476

    PubMed  CAS  Google Scholar 

  51. Parke WW, Watanabe R (1990) Adhesions of the ventral lumbar dura. An adjunct source of discogenic pain? Spine 15(4):300–303. doi:10.1097/00007632-199004000-00010

    Article  PubMed  CAS  Google Scholar 

  52. Pedersen HE, Blunck CF, Gardner E (1956) The anatomy of lumbosacral posterior rami and meningeal branches of spinal nerve (sinu-vertebral nerves); with an experimental study of their functions. J Bone Joint Surg Am 38:377–391

    PubMed  Google Scholar 

  53. Petrie JL, Ross JS (1996) Use of ADCON-L to inhibit postoperative fibrosis and related symptoms following lumbar disc surgery: a preliminary report. Eur Spine J 5(Suppl1):10–17. doi:10.1007/BF00298567

    Article  Google Scholar 

  54. Ramer MS, Bisby MA (1999) Adrenergic innervation of rat sensory ganglia following proximal or distal painful sciatic neuropathy: distinct mechanisms revealed by anti-NGF treatment. Eur J Neurosci 11(3):837–846. doi:10.1046/j.1460-9568.1999.00491.x

    Article  PubMed  CAS  Google Scholar 

  55. Reinert A, Kaske A, Mense S (1998) Inflammation-induced increase in the density of neuropeptide-immunoreactive nerve endings in rat skeletal muscle. Exp Brain Res 121:174–180. doi:10.1007/s002210050449

    Article  PubMed  CAS  Google Scholar 

  56. Rossi F, van der Want JJ, Wiklund L, Strata P (1991) Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II. Synaptic organization on reinnervated Purkinje cells. J Comp Neurol 308(4):536–554. doi:10.1002/cne.903080404

    Article  PubMed  CAS  Google Scholar 

  57. Saxler G, Krämer J, Barden B, Kurt A, Pförtner J, Bernsmann K (2005) The long-term clinical sequelae of incidental durotomy in lumbar disc surgery. Spine 30(20):2298–2302. doi:10.1097/01.brs.0000182131.44670.f7

    Article  PubMed  Google Scholar 

  58. Schofferman J, Reynolds J, Herzog R, Covington E, Dreyfuss P, O`Neill C (2003) Failed back surgery: etiology and diagnostic evaluation. Spine J 3(5):400–403. doi:10.1016/S1529-9430(03)00122-0

    Article  PubMed  Google Scholar 

  59. Sekiguchi Y, Kinnai Y, Kikuchi S, Sugiura Y (1996) An anatomic study of neuropeptide immunoreactivities in the lumbar dura mater after lumbar sympathectomy. Spine 21(8):925–930. doi:10.1097/00007632-199604150-00004

    Article  PubMed  CAS  Google Scholar 

  60. Songer MN, Rauschnig W, Carson EW, Pandit SM (1995) Analysis of peridural scar formation and its prevention after lumbar laminotomy and discectomy in dogs. Spine 20(5):571–580. doi:10.1097/00007632-199503010-00012

    Article  PubMed  CAS  Google Scholar 

  61. Stelzner DJ, Baisden RH, Goodman DC (1976) The ventral lateral geniculate nucleus, pars lateralis of the rat. Synaptic organization and conditions for axonal sprouting. Cell Tissue Res 170(4):435–454. doi:10.1007/BF00361703

    Article  PubMed  CAS  Google Scholar 

  62. Sternberg EM, Hill JM, Chrousos GP, Kamilaris T, Listwak SJ, Gold PW et al (1989) Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci USA 86:2374–2378. doi:10.1073/pnas.86.7.2374

    Article  PubMed  CAS  Google Scholar 

  63. Stilwell DL (1956) The nerve supply of the vertebral column and its associated structures in the monkey. Anat Rec 125(2):139–169. doi:10.1002/ar.1091250202

    Article  PubMed  Google Scholar 

  64. Vaquero J, Arias A, Oy S, Martinez R, Zurita M (1993) Effect of fibrin glue on postlaminectomy scar formation. Acta Neurochir (Wien) 120(3–4):159–163. doi:10.1007/BF02112036

    Article  CAS  Google Scholar 

  65. Wiberg G (1949) Back pain in relation to the nerve supply of the intervertebral disc. Acta Orthop Scand 19:211–221

    Article  PubMed  CAS  Google Scholar 

  66. Wiklund L, Rossi F, Strata P, van der Want JJ (1990) The rat olivocerebellar system visualized in detail with anterograde PHA-L tracing technique, and sprouting of climbing fibers demonstrated after subtotal olivary lesions. Eur J Morphol 28(2–4):256–267

    PubMed  CAS  Google Scholar 

  67. Wilkinson HA (1992) The Failed back surgery syndrome. Springer, New York, pp 1–2

    Google Scholar 

  68. Yen LD, Bennett GJ, Ribeiro-da-Silva A (2006) Sympathetic sprouting and changes in nociceptive sensory innervation in the glabrous skin of the rat hind paw following partial peripheral nerve injury. J Comp Neurol 495(6):679–690. doi:10.1002/cne.20899

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Saxler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxler, G., Brankamp, J., von Knoch, M. et al. The density of nociceptive SP- and CGRP-immunopositive nerve fibers in the dura mater lumbalis of rats is enhanced after laminectomy, even after application of autologous fat grafts. Eur Spine J 17, 1362–1372 (2008). https://doi.org/10.1007/s00586-008-0741-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0741-7

Keywords

Navigation