Skip to main content

Advertisement

Log in

Biomechanical analysis of a new expandable vertebral body replacement combined with a new polyaxial antero-lateral plate and/or pedicle screws and rods

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Restoration of the anterior spinal profile and regular load-bearing is the main goal treating anterior spinal defects in case of fracture. Over the past years, development and clinical usage of cages for vertebral body replacement have increased rapidly. For an enhanced stabilization of rotationally unstable fractures, additional antero-lateral implants are common. The purpose of this study was the evaluation of the biomechanical behaviour of a recently modified, in situ distractible vertebral body replacement (VBR) combined with a newly developed antero-lateral polyaxial plate and/or pedicle screws and rods using a full corpectomy model as fracture simulation.

Methods

Twelve human spinal specimens (Th12–L4) were tested in a six-degree-of-freedom spine tester applying pure moments of 7.5 Nm to evaluate the stiffness of three different test instrumentations using a total corpectomy L2 model: (1) VBR + antero-lateral plate; (2) VBR, antero-lateral plate + pedicle screws and rods and (3) VBR + pedicle screws and rods.

Results

In the presented total corpectomy defect model, only the combined antero-posterior instrumentation (VBR, antero-lateral plate + pedicle screws and rods) could achieve higher stiffness in all three-movement planes than the intact specimen. In axial rotation, neither isolated anterior instrumentation (VBR + antero-lateral plate) nor isolated posterior instrumentation (VBR + pedicle screws and rods) could stabilize the total corpectomy compared to the intact state.

Conclusions

For rotationally unstable vertebral body fractures, only combined antero-posterior instrumentation could significantly decrease the range of motion (ROM) in all motion planes compared to the intact state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alici E, Alku OZ, Dost S (1990) Prosthesis designed for vertebral body replacement. J Biomech 23(8):799–809

    Article  PubMed  CAS  Google Scholar 

  2. Banwart JC, Knop C, Lange U, Blauth M (1999) Effect of a crosslink or cerclage on the mechanical stability of an internal fixator. Orthopäde 28:714–722

    Google Scholar 

  3. Been HD (1991) Anterior decompression and stabilization of thoracolumbar burst fractures by the use of the Slot-Zielke device. Spine 16:70–77

    Article  PubMed  CAS  Google Scholar 

  4. Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopäde 26:437–449

    PubMed  CAS  Google Scholar 

  5. Bouchard JA, Koka A, Bensusan JS, Stevenson S, Emery SE (1994) Effects of irradiation on posterior spinal fusions. A rabbit model. Spine 19(16):1836–1841

    Article  PubMed  CAS  Google Scholar 

  6. Brodke DS, Gollogly S, Bachus KN, Mohr RA, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28:1794–1801

    Article  PubMed  Google Scholar 

  7. Claes L, Schultheiss M, Wolf S, Wilke HJ, Arand M, Kinzl L (1999) New radiolucent system for vertebral body replacement its stability in comparison to other systems. J Biomed Mater Res 48:82–89

    Article  PubMed  CAS  Google Scholar 

  8. Cybulski GR, Douglas RA, Meyer PR, Rovin AR (1992) Complications in three-column cervical spine injuries requiring anterior–posterior stabilisation. Spine 17:253–256

    Article  PubMed  CAS  Google Scholar 

  9. Disch AC, Knop C, Schaser KD, Blauth M, Schmoelz W (2008) Angular stable anterior plating following thoracolumbar corpectomy reveals superior segmental stability compared to conventional polyaxial plate fixation. Spine 33(13):1429–1437

    Article  PubMed  Google Scholar 

  10. Eysel P, Hopf C, Füderer S (2001) Kyphotic deformities in fractures of the thoracolumbar spine. Orthopäde 30:955–964

    Article  PubMed  CAS  Google Scholar 

  11. Gebhard F, Schultheiss M (2008) Surgical treatment of fractures of the lumbar spine. In: Käfer W, Cakir B, Mattes T, Reichel H (eds) Orthopaedic spine surgery. An instructional course book. Heidelberg, Steinkopff, pp 129–136

  12. Gertzbein SD, Court-Brown CM, Jacobs RR, Marks P, Martin C, Stoll J, Fazl M, Schwartz M, Rowed D (1988) Decompression and circumferential stabilization of unstable spinal fractures. Spine 13(8):892–895

    Article  PubMed  CAS  Google Scholar 

  13. Goulet JA, Senunas LE, De Silva GL, Greefield ML (1997) Autogenous iliac crest bone graft. Clin Orthop 339:76–81

    Article  PubMed  Google Scholar 

  14. Kaneda K, Taneichi H, Abumi K, Hashimoto T, Satoh S, Fujiya M (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79(1):69–83

    PubMed  CAS  Google Scholar 

  15. Khodadadyan-Klostermann C, Schaefer J, Schleicher P, Pflugmacher R, Eindorf T, Haas NP, Kandziora F (2004) Expandable cages: biomechanical comparison of different cages for ventral spondylodesis in the thoracolumbar spine. Chirurg 75:694–701

    Article  PubMed  CAS  Google Scholar 

  16. Knop C, Blauth M, Bühren V, Hax PM, Kinzl L, Mutschler W, Pommer A, Ulrich C, Wagner S, Weckbach A, Wentzensen A, Wörsdörfer O (1999) Surgical treatment of injuries of the thoracolumbar transition. 1: Epidemiology. Unfallchirurg 102(12):924–935

    Article  PubMed  CAS  Google Scholar 

  17. Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485

    Article  PubMed  CAS  Google Scholar 

  18. Kossmann T, Ertel W, Platz A, Trentz O (1999) Combined surgery for fractures of the thoraco-lumbar junction using the inlay-span method. Orthopäde 28(5):432–440

    PubMed  CAS  Google Scholar 

  19. Kostuik JP (1988) Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine 13(3):286–293

    Article  PubMed  CAS  Google Scholar 

  20. Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14(12):1324–1331

    Article  PubMed  CAS  Google Scholar 

  21. Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott JS, Aebi M (eds) Manual of internal fixation of the spine. Lippincott-Raven, Philadelphia, pp 127–146

  22. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201

    Article  PubMed  CAS  Google Scholar 

  23. Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300

    Article  PubMed  CAS  Google Scholar 

  24. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134

    Article  PubMed  CAS  Google Scholar 

  25. Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F (2004) Biomechanical comparison of expandable cages for the vertebral body replacement in the thoracolumbar spine. Spine 29(13):1413–1419

    Article  PubMed  Google Scholar 

  26. Reinhold M, Schmoelz W, Canto F, Krappinger D, Blauth M, Knop C (2009) A new distractible implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine. Arch Orthop Trauma Surg 29(10):1375–1382

    Article  Google Scholar 

  27. Rohlmann A, Zander T, Fehrmann M, Klöckner C, Bergmann G (2000) Influence of implants for vertebral body replacement on the mechanical behaviour of the lumbar spine. Orthopäde 3:503–507

    Google Scholar 

  28. Sawin PD, Traynelis VC, Menezes AH (1998) A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg 88(2):255–265

    Article  PubMed  CAS  Google Scholar 

  29. Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleitner T, Kinzl L, Claes L (2000) Vertebral body replacement with bioglas-polyurethane composite in spine metastases–clinical, radiological and biomechanical results. Eur Spine J 9(5):437–444

    Article  PubMed  CAS  Google Scholar 

  30. Schultheiss M, Hartwig E, Kinzl L, Claes L, Wilke HJ (2004) Thoracolumbar fracture stabilization: comparative biomechanical evaluation of a new video-assisted implantable system. Eur Spine J 13:93–100

    Article  PubMed  CAS  Google Scholar 

  31. Thalgott JS, Kabins MB, Timlin M, Fritts K, Giuffre JM (1997) Four year experience with the AO anterior thoracolumbar locking plate. Spinal Cord 35(5):286–291

    Article  PubMed  CAS  Google Scholar 

  32. Ulmar B, Cakir B, Huch K, Puhl W, Richter M (2004) Expandable titanium cages in vertebral body replacement. Z Orthop 142(6):449–455

    Article  PubMed  CAS  Google Scholar 

  33. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154

    Article  PubMed  CAS  Google Scholar 

  34. Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular deformation rate, and moisture condition. Anat Rec 251(1):15–19

    Article  PubMed  CAS  Google Scholar 

  35. Wippermann BW, Schratt HE, Steeg S, Tscherne H (1997) Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1191 cases. Chirurg 68:1286–1291

    Article  PubMed  CAS  Google Scholar 

  36. Vahldiek MJ, Panjabi MM (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23:543–550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All implants used in the present study were provided for free by Ulrich medical, Ulm, Germany. The study was supported by institutional funds of Ulrich medical, Ulm, Germany.

Conflit of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Schmoelz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulmar, B., Erhart, S., Unger, S. et al. Biomechanical analysis of a new expandable vertebral body replacement combined with a new polyaxial antero-lateral plate and/or pedicle screws and rods. Eur Spine J 21, 546–553 (2012). https://doi.org/10.1007/s00586-011-2042-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-2042-9

Keywords

Navigation