Skip to main content

Advertisement

Log in

31P-magnetic resonance spectroscopy (31P-MRS) detects early changes in kidney high-energy phosphate metabolism during a 6-month Valsartan treatment in diabetic and non-diabetic kidney-transplanted patients

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

31P-magnetic resonance spectroscopy (31P-MRS) is a non-invasive tool to study high-energy phosphate (HEP) metabolism. We evaluate whether 31P-MRS can detect early changes in kidney HEP metabolism during a 6-month trial with Valsartan. Twenty consecutive stable and normotensive kidney-transplanted patients were enrolled. Nine of them received short-term low-dose Valsartan treatment (80 mg/day) for 6 months, while 11 controls received no medication. Kidney HEP metabolism was evaluated both at baseline and after treatment by 31P-MRS with a 1.5 T system (Gyroscan Intera Master 1.5 MR System; Philips Medical Systems, Best, The Netherlands). Valsartan-treated patients (n = 9) showed a significant increase in β-ATP/Pi ratio, a marker of kidney HEP metabolism (baseline = 1.03 ± 0.08 vs. 6 months = 1.26 ± 0.07, p = 0.03). In contrast, the β-ATP/Pi ratio in the control group (n = 11) did not change (baseline = 0.85 ± 0.10 vs. 6 months = 0.89 ± 0.08, ns). The improvement in the β-ATP/Pi ratio was not associated with a reduction in arterial blood pressure or in urinary albumin excretion. Kidney-localized 31P-MRS can detect early changes in kidney HEP metabolism during a short-term low-dose Valsartan treatment in stable normotensive kidney-transplanted patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fiorina P, Perseghin G, De Cobelli F et al (2007) Altered kidney graft high-energy phosphate metabolism in kidney-transplanted end-stage renal disease type 1 diabetic patients: a cross-sectional analysis of the effect of kidney alone and kidney-pancreas transplantation. Diabetes Care 30:597–603

    Article  PubMed  CAS  Google Scholar 

  2. McNamara R, Arias-Mendoza F, Brown TR (1994) Investigation of broad resonances in 31P NMR spectra of the human brain in vivo. NMR Biomed 7:237–242

    Article  PubMed  CAS  Google Scholar 

  3. Bretan PN Jr, Vigneron DB, Hricak H et al (1986) Assessment of renal preservation by phosphorus-31 magnetic resonance spectroscopy: in vivo normothermic blood perfusion. J Urol 136:1356–1359

    PubMed  CAS  Google Scholar 

  4. Befroy DE, Shulman GI (2011) Magnetic resonance spectroscopy studies of human metabolism. Diabetes 60:1361–1369

    Article  PubMed  CAS  Google Scholar 

  5. Burtscher IM, Holtas S (2001) Proton magnetic resonance spectroscopy in brain tumours: clinical applications. Neuroradiology 43:345–352

    Article  PubMed  CAS  Google Scholar 

  6. Pomer S (1989) 31-phosphorus magnetic resonance spectroscopy—a new research instrument in urology. Determination of current status and outlook for clinical use. Urol A 28:223–230

    CAS  Google Scholar 

  7. Pomer S, Hull WE, Rohl L, Mohring K (1989) Assessment of renal viability by high-field phosphorus-31 magnetic resonance spectrometry. Transpl Proc 21:1268

    CAS  Google Scholar 

  8. Perseghin G, Fiorina P, De Cobelli F et al (2005) Cross-sectional assessment of the effect of kidney and kidney–pancreas transplantation on resting left ventricular energy metabolism in type 1 diabetic-uremic patients: a phosphorous-31 magnetic resonance spectroscopy study. J Am Coll Cardiol 46:1085–1092

    Article  PubMed  Google Scholar 

  9. Hene RJ, van der Grond J, Boer WH, Mali WP, Koomans HA (1994) Pre-transplantation assessment of renal viability with 31P magnetic resonance spectroscopy. Kidney Int 46:1694–1699

    Article  PubMed  CAS  Google Scholar 

  10. Seto K, Ikehira H, Obata T et al (2001) Long-term assessment of posttransplant renal prognosis with 31P magnetic resonance spectroscopy. Transplantation 72:627–630

    Article  PubMed  CAS  Google Scholar 

  11. Klemm A, Rzanny R, Funfstuck R et al (1998) 31P-magnetic resonance spectroscopy (31P-MRS) of human allografts after renal transplantation. Nephrol Dial Transpl 13:3147–3152

    Article  CAS  Google Scholar 

  12. Boersema M, Rienstra H, van den Heuvel M et al (2009) Donor and recipient contribution to transplant vasculopathy in chronic renal transplant dysfunction. Transplantation 88:1386–1392

    Article  PubMed  Google Scholar 

  13. Opelz G, Wujciak T, Ritz E (1998) Association of chronic kidney graft failure with recipient blood pressure. Collaborative transplant study. Kidney Int 53:217–222

    Article  PubMed  CAS  Google Scholar 

  14. Raman GV (1991) Post transplant hypertension. J Hum Hypertens 5:1–6

    PubMed  CAS  Google Scholar 

  15. Atkins RC, Zimmet P (2010) Diabetic kidney disease: act now or pay later. Acta Diabetol 47:1–4

    Article  PubMed  Google Scholar 

  16. Pan HZ, Zhang L, Guo MY et al (2009) The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetol 47:71–76

    Article  PubMed  Google Scholar 

  17. Cao Z, Cooper ME (2011) Efficacy of renin-angiotensin system (RAS) blockers on cardiovascular and renal outcomes in patients with type 2 diabetes. Acta Diabetol (Epub ahead of print)

  18. Colvin RB (2003) Chronic allograft nephropathy. N Engl J Med 349:2288–2290

    Article  PubMed  CAS  Google Scholar 

  19. Fiorina P, Folli F, Zerbini G et al (2003) Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol 14:2150–2158

    Article  PubMed  Google Scholar 

  20. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M (1998) Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339:69–75

    Article  PubMed  CAS  Google Scholar 

  21. Peng H, Wang C, Ye ZC et al (2009) How increased VEGF induces glomerular hyperpermeability: a potential signaling pathway of Rac1 activation. Acta Diabetol 47:57–63

    Article  PubMed  Google Scholar 

  22. Andres A, Morales E, Morales JM, Bosch I, Campo C, Ruilope LM (2006) Efficacy and safety of Valsartan, an angiotensin II receptor antagonist, in hypertension after renal transplantation: a randomized multicenter study. Transpl Proc 38:2419–2423

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Paolo Fiorina is the recipient of: JDRF-Career Development Award, ASN Career Development Award, ADA mentor-based fellowship and MIUR grant: ("Staminali"RF-FSR-2008-1213704) and a TRP (Translational Research Program) grant. Roberto Bassi is supported by a ADA mentor-based fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Fiorina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorina, P., Bassi, R., Gremizzi, C. et al. 31P-magnetic resonance spectroscopy (31P-MRS) detects early changes in kidney high-energy phosphate metabolism during a 6-month Valsartan treatment in diabetic and non-diabetic kidney-transplanted patients. Acta Diabetol 49 (Suppl 1), 133–139 (2012). https://doi.org/10.1007/s00592-012-0369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0369-2

Keywords

Navigation