Skip to main content

Advertisement

Log in

Effects of exenatide, insulin, and pioglitazone on liver fat content and body fat distributions in drug-naive subjects with type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Ectopic accumulation of lipids in nonadipose tissues plays a primary role in the pathogenesis of type 2 diabetes mellitus (T2DM). This study was to examine the effects of exenatide, insulin, and pioglitazone on liver fat content and body fat distributions in T2DM. Thirty-three drug-naive T2DM patients (age 52.7 ± 1.7 years, HbA1c 8.7 ± 0.2 %, body mass index 24.5 ± 0.5 kg/m2) were randomized into exenatide, insulin, or pioglitazone for 6 months. Intrahepatic fat (IHF), visceral fat (VF), and subcutaneous fat (SF) were measured using proton nuclear magnetic resonance spectroscopy. Plasma tumor necrosis factor α (TNFα) and adiponectin were assayed by ELISA. HbA1c declined significantly in all three groups. Body weight, waist, and serum triglycerides decreased with exenatide. After interventions, IHF significantly reduced with three treatments (exenatide Δ = −68 %, insulin Δ = −58 %, pioglitazone Δ = −49 %). Exenatide reduced VF (Δ = −36 %) and SF (Δ = −13 %), and pioglitazone decreased VF (Δ = −30 %) with no impact on SF, whereas insulin had no impact on VF or SF. Levels of TNFα (exenatide/insulin/pioglitazone) decreased, and levels of adiponectin (exenatide/pioglitazone) increased. Analysis showed that ΔIHF correlated with ΔHbA1c and Δweight. Besides, ΔIHF correlated with Δtriglycerides and ΔTNFα, but the correlations fell short of significance after BMI adjustment. By linear regression analysis, ΔHbA1c alone explained 41.5 % of the variance of ΔIHF, and ΔHbA1c + Δweight explained 57.6 % of the variance. Liver fat content can be significantly reduced irrespective of using exenatide, insulin, and pioglitazone. Early glycaemic control plays an important role in slowing progression of fatty liver in T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McGarry JD (2001) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    Article  Google Scholar 

  2. Unger RH (2008) Reinventing type 2 diabetes: pathogenesis, treatment, and prevention. JAMA 299:1185–1187

    Article  PubMed  CAS  Google Scholar 

  3. Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL (2012) Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344:d7771

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jendle J, Nauck MA, Matthews DR, Frid A, Hermansen K, Düring M, Zdravkovic M, Strauss BJ, Garber AJ (2009) LEAD-2 and LEAD-3 study groups weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab 11:1163–1172

    Article  PubMed  CAS  Google Scholar 

  5. Cuthbertson DJ, Irwin A, Gardner CJ, Daousi C, Purewal T, Furlong N, Goenka N, Thomas EL, Adams VL, Pushpakom SP, Pirmohamed M, Kemp GJ (2012) Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS One 7:e50117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Sathyanarayana P, Jogi M, Muthupillai R, Krishnamurthy R, Samson SL, Bajaj M (2011) Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring) 19:2310–2315

    Article  CAS  Google Scholar 

  7. Lindberg M, Astrup A (2007) The role of glitazones in management of type 2 diabetes. A dream or a nightmare? Obes Rev 8:381–384

    Article  PubMed  CAS  Google Scholar 

  8. Bajaj M, Suraamornkul S, Pratipanawatr T, Hardies LJ, Pratipanawatr W, Glass L, Cersosimo E, Miyazaki Y, DeFronzo RA (2003) Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 52:1364–1370

    Article  PubMed  CAS  Google Scholar 

  9. Weng J, Li Y, Xu W, Shi L, Zhang Q, Zhu D, Hu Y, Zhou Z, Yan X, Tian H, Ran X, Luo Z, Xian J, Yan L, Li F, Zeng L, Chen Y, Yang L, Yan S, Liu J, Li M, Fu Z, Cheng H (2008) Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet 371:1753–1760

    Article  PubMed  CAS  Google Scholar 

  10. Hu Y, Li L, Xu Y, Yu T, Tong G, Huang H, Bi Y, Weng J, Zhu D (2011) Short-term intensive therapy in newly diagnosed type 2 diabetes partially restores both insulin sensitivity and β-cell function in subjects with long-term remission. Diabetes Care 34:1848–1853

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Juurinen L, Tiikkainen M, Häkkinen AM, Hakkarainen A, Yki-Järvinen H (2007) Effects of insulin therapy on liver fat content and hepatic insulin sensitivity in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 292:E829–E835

    Article  PubMed  CAS  Google Scholar 

  12. Shah PK, Mudaliar S, Chang AR, Aroda V, Andre M, Burke P, Henry RR (2011) Effects of intensive insulin therapy alone and in combination with pioglitazone on body weight, composition, distribution and liver fat content in patients with type 2 diabetes. Diabetes Obes Metab 13:505–510

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553

    Article  PubMed  CAS  Google Scholar 

  14. Xu W, Bi Y, Sun Z, Li J, Guo L, Yang T, Wu G, Shi L, Feng Z, Qiu L, Li Q, Guo X, Luo Z, Lu J, Shan Z, Yang W, Ji Q, Yan L, Li H, Yu X, Li S, Zhou Z, Lv X, Liang Z, Lin S, Zeng L, Yan J, Ji L, Weng J (2014) Comparison of the effects on glycaemic control and β-cell function in newly diagnosed type 2 diabetes patients of treatment with exenatide, insulin or pioglitazone: a multicentre randomized parallel-group trial (the CONFIDENCE study). J Intern Med Jul 16, Epub ahead of print

  15. Bi Y, Zeng LY, Zhu DL, Yan J, Zhang Y, Tong G, Mu P, Shen S, Hu Y, Yu Q, Liang H, Weng J (2012) Association of β-cell function and insulin sensitivity with fasting and 2 h plasma glucose in a large Chinese population. Diabetes Obes Metab 14:174–180

    Article  PubMed  CAS  Google Scholar 

  16. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  17. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470

    Article  PubMed  CAS  Google Scholar 

  18. Thomas EL, Hamilton G, Patel N, O’Dwyer R, Doré CJ, Goldin RD, Bell JD, Taylor-Robinson SD (2005) Hepatic triglyceride content and its relation to body adiposity: a magnetic resonance imaging and proton magnetic resonance spectroscopy study. Gut 54:122–127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Liska D, Dufour S, Zern TL, Taksali S, Calí AM, Dziura J, Shulman GI, Pierpont BM, Caprio S (2007) Interethnic differences in muscle, liver, and abdominal fat partitioning in obese adolescents. PLoS One 2:e569

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hwang JH, Stein DT, Barzilai N, Cui MH, Tonelli J, Kishore P, Hawkins M (2007) Increased intrahepatic triglyceride is associated with peripheral insulin resistance: in vivo MR imaging and spectroscopy studies. Am J Physiol Endocrinol Metab 293:E1663–E1669

    Article  PubMed  CAS  Google Scholar 

  21. Porepa L, Ray JG, Sanchez-Romeu P, Booth GL (2010) Newly diagnosed diabetes mellitus as a risk factor for serious liver disease. CMAJ 182:E526–E531

    Article  PubMed  PubMed Central  Google Scholar 

  22. Musso G, Cassader M, Rosina F, Gambino R (2012) Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 55:885–904

    Article  PubMed  CAS  Google Scholar 

  23. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI (2005) Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54:603–608

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Kenny PR, Brady DE, Torres DM, Ragozzino L, Chalasani N, Harrison SA (2010) Exenatide in the treatment of diabetic patients with non-alcoholic steatohepatitis: a case series. Am J Gastroenterol 105:2707–2709

    Article  PubMed  Google Scholar 

  25. Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R (2011) Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54:2506–2514

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Asrih M, Jornayvaz F (2013) Inflammation as a link between nonalcoholic fatty liver disease and insulin resistance. J Endocrinol 218:R25–R36

    Article  PubMed  CAS  Google Scholar 

  27. Daniele G, Guardado Mendoza R, Winnier D, Fiorentino TV, Pengou Z, Cornell J, Andreozzi F, Jenkinson C, Cersosimo E, Federici M, Tripathy D, Folli F (2014) The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetol 51:123–131

    Article  PubMed  CAS  Google Scholar 

  28. Tripathy D, Daniele G, Fiorentino TV, Perez-Cadena Z, Chavez-Velasquez A, Kamath S, Fanti P, Jenkinson C, Andreozzi F, Federici M, Gastaldelli A, Defronzo RA, Folli F (2013) Pioglitazone improves glucose metabolism and modulates skeletal muscle TIMP-3-TACE dyad in type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled, mechanistic study. Diabetologia 56:2153–2163

    Article  PubMed  CAS  Google Scholar 

  29. Lesmana CR, Hasan I, Budihusodo U, Gani RA, Krisnuhoni E, Akbar N, Lesmana LA (2009) Diagnostic value of a group of biochemical markers of liver fibrosis in patients with non-alcoholic steatohepatitis. J Did Dis 10:201–206

    Article  CAS  Google Scholar 

  30. Speliotes EK, Massaro JM, Hoffmann U, Vasan RS, Meigs JB, Sahani DV, Hirschhorn JN, O’Donnell CJ, Fox CS (2010) Fatty liver is associated with dyslipidemia and dysglycemia independent of visceral fat: the Framingham heart study. Hepatology 51:1979–1987

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Fernández-Miranda C, Pérez-Carreras M, Colina F, López-Alonso G, Vargas C, Solís-Herruzo JA (2008) A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease. Dig Liver Dis 40:200–205

    Article  PubMed  Google Scholar 

  32. Spadaro L, Magliocco O, Spampinato D, Piro S, Oliveri C, Alagona C, Papa G, Rabuazzo AM, Purrello F (2008) Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease. Dig Liver Dis 40:194–199

    Article  PubMed  CAS  Google Scholar 

  33. Deurenberg P, Yap M, van Staveren WA (1998) Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 22:1164–1171

    Article  PubMed  CAS  Google Scholar 

  34. Chiu KC, Cohan P, Lee NP, Chuang LM (2000) Insulin sensitivity differs among ethnic groups with a compensatory response in beta-cell function. Diabetes Care 23:1353–1358

    Article  PubMed  CAS  Google Scholar 

  35. Ma RC, Chan JC (2013) Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann NY Acad Sci 1281:64–91

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J (2010) China National Diabetes and Metabolic Disorders study group prevalence of diabetes among men and women in China. N Engl J Med 362:1090–1101

    Article  PubMed  CAS  Google Scholar 

  37. Bazzocchi A, Diano D, Ponti F, Salizzoni E, Albisinni U, Marchesini G, Battista G (2014) A 360-degree overview of body composition in healthy people: relationships among anthropometry, ultrasonography, and dual-energy X-ray absorptiometry. Nutrition 30:696–701

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the participating patients. This study was sponsored by Grants from National Natural Science Foundation of China Grant Award (81270906, 81070636), 973 project (2012CB517506), the China postdoctoral Science Foundation (2012M521050), Jiangsu postdoctoral Science Foundation, Jiangsu Province’s Key Provincial Talents Program (RC2011011), the Key Project of Nanjing Medical Science and Technology Development Foundation (ZKX11017, YKK11092), the Project of National Key Clinical Division, Jiangsu Province’s Key Discipline of Medicine (XK201105), National Science Fund for Distinguished Young Scholars (81025005), and New Drug Development, Construction and management of Clinical Biobank for Major Disease (2011ZX0907-001-08).

Conflict of interest

Yan Bi, Bing Zhang, Wen Xu, Huijie Yang, Wenhuan Feng, Cuiliu Li, Guoyu Tong, Ming Li, Xin Wang, Shanmei Shen, Bin Zhu, Jianping Weng, and Dalong Zhu declare that they have no conflict of interest.

Human and Animal Rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhu, Jianping Weng or Dalong Zhu.

Additional information

Managed by Massimo Federici.

Yan Bi and Bing Zhang contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Y., Zhang, B., Xu, W. et al. Effects of exenatide, insulin, and pioglitazone on liver fat content and body fat distributions in drug-naive subjects with type 2 diabetes. Acta Diabetol 51, 865–873 (2014). https://doi.org/10.1007/s00592-014-0638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0638-3

Keywords

Navigation