Skip to main content
Log in

Independent correlates of urinary albumin excretion within the normoalbuminuric range in patients with type 2 diabetes: The Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Within the normoalbuminuric range, low albuminuria (LA, 10–29 mg/24 h) is associated with higher adverse cardiovascular and renal outcomes than normal albuminuria (NA, <10 mg/24 h). This cross-sectional analysis of the cohort from the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study was aimed at assessing the independent correlates of LA versus NA in patients with type 2 diabetes.

Methods

This analysis involved 11,538 normoalbuminuric patients (73.2 % of the entire RIACE cohort): 6023 (52.2 %) with NA and 5515 (47.8 %) with LA. Binary logistic regression analysis with backward conditional variable selection was applied to assess the independent correlates of LA versus NA.

Results

Compared with NA subjects, LA patients were more frequently males, older and with family history of hypertension, had longer diabetes duration, lower HDL cholesterol, and higher haemoglobin (Hb) A1c, triglycerides, and blood pressure (BP), use of anti-hyperglycaemic and anti-hypertensive drugs, and prevalence of metabolic syndrome, retinopathy, chronic kidney disease, any cardiovascular disease, myocardial infarction, and coronary and peripheral events. Men with LA were also more frequently current or former smokers and had higher body mass index, waist circumference, and non-HDL cholesterol. Independent correlates of LA were age (OR 1.018), family history of hypertension (OR 1.321), smoking status (former, OR 1.158; current, OR 1.237), HbA1c (OR 1.062), waist circumference (OR 1.050), triglycerides (OR 1.001), and diastolic BP (OR 1.014), together with use of anti-hyperglycaemic and anti-hypertensive agents.

Conclusions

Several risk factors are associated with increased albuminuria within the normoalbuminuric range. As most of these factors are potentially modifiable, treating them aggressively might reduce the excess risk associated with LA.

Trial registration

NCT00715481; www.ClinicalTrials.gov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AER:

Albumin excretion rate

ACR:

Albumin-to-creatinine ratio

CVD:

Cardiovascular disease

eGFR:

Estimated glomerular filtration rate

DM:

Diabetes mellitus

T2DM:

Type 2 DM

RIACE:

Renal insufficiency and cardiovascular events

NA:

Normal albuminuria

LA:

Low albuminuria

T1DM:

Type 1 DM

ROADMAP:

Randomised Olmesartan and Diabetes Microalbuminuria Prevention

BP:

Blood pressure

BMI:

Body mass index

MS:

Metabolic syndrome

HbA1c :

Haemoglobin A1c

CKD:

Chronic kidney disease

DR:

Diabetic retinopathy

OHA:

Oral hypoglycaemic agents

RAS:

Renin–angiotensin system

DHP:

Dihydropyridine

PP:

Pulse pressure

OR:

Odds ratio

CI:

Confidence interval

References

  1. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    Article  Google Scholar 

  2. Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O, Iseki K, Jassal SK, Kimm H, Kronenberg F, Oien CM, Levey AS, Levin A, Woodward M, Hemmelgarn BR, Chronic Kidney Disease Prognosis Consortium (2013) Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 346:f324

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, Lee BJ, Perkins RM, Rossing P, Sairenchi T, Tonelli M, Vassalotti JA, Yamagishi K, Coresh J, de Jong PE, Wen CP, Nelson RG, Chronic Kidney Disease Prognosis Consortium (2012) Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380:1662–1673

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Hallé JP, Young J, Rashkow A, Joyce C, Nawaz S, Yusuf S, HOPE Study Investigators (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421–426

    Article  CAS  PubMed  Google Scholar 

  5. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, Gans RO, Janssen WM, Grobbee DE, de Jong PE, Prevention of Renal and Vascular End Stage Disease (PREVEND) Study Group (2002) Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106:1777–1782

    Article  CAS  PubMed  Google Scholar 

  6. Blecker S, Matsushita K, Köttgen A, Loehr LR, Bertoni AG, Boulware LE, Coresh J (2011) High-normal albuminuria and risk of heart failure in the community. Am J Kidney Dis 58:47–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wachtell K, Ibsen H, Olsen MH, Borch-Johnsen K, Lindholm LH, Mogensen CE, Dahlöf B, Devereux RB, Beevers G, de Faire U, Fyhrquist F, Julius S, Kjeldsen SE, Kristianson K, Lederballe-Pedersen O, Nieminen MS, Okin PM, Omvik P, Oparil S, Wedel H, Snapinn SM, Aurup P (2003) Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med 139:901–906

    Article  PubMed  Google Scholar 

  8. Solini A, Penno G, Bonora E, Fondelli C, Orsi E, Arosio M, Trevisan R, Vedovato M, Cignarelli M, Andreozzi F, Nicolucci A, Pugliese G, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group (2012) Diverging association of reduced glomerular filtration rate and albuminuria with coronary and noncoronary events in patients with type 2 diabetes: The Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study. Diabetes Care 35:143–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. de Boer IH, Sibley SD, Kestenbaum B, Sampson JN, Young B, Cleary PA, Steffes MW, Weiss NS, Brunzell JD, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group (2007) Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol 18:235–243

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chaturvedi N, Bandinelli S, Mangili R, Penno G, Rottiers RE, Fuller JH (2001) Microalbuminuria in type 1 diabetes: rates, risk factors and glycemic threshold. Kidney Int 60:219–227

    Article  CAS  PubMed  Google Scholar 

  11. Stone ML, Craig ME, Chan AK, Lee JW, Verge CF, Donaghue KC (2006) Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care 29:2072–2077

    Article  CAS  PubMed  Google Scholar 

  12. Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I, Binder C, Parving HH (2004) Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328:1105

    Article  PubMed Central  PubMed  Google Scholar 

  13. Yamada T, Komatsu M, Komiya I, Miyahara Y, Shima Y, Matsuzaki M, Ishikawa Y, Mita R, Fujiwara M, Furusato N, Nishi K, Aizawa T (2005) Development, progression, and regression of microalbuminuria in Japanese patients with type 2 diabetes under tight glycemic and blood pressure control: the Kashiwa study. Diabetes Care 28:2733–2738

    Article  PubMed  Google Scholar 

  14. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, UKPDS Study Group (2006) Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 55:1832–1839

    Article  CAS  PubMed  Google Scholar 

  15. Ritz E, Viberti GC, Ruilope LM, Rabelink AJ, Izzo JL Jr, Katayama S, Ito S, Mimran A, Menne J, Rump LC, Januszewicz A, Haller H (2010) Determinants of urinary albumin excretion within the normal range in patients with type 2 diabetes: the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) Study. Diabetologia 53:49–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Levey AS, Cattran D, Friedman A, Miller WG, Sedor J, Tuttle K, Kasiske B, Hostetter T (2009) Proteinuria as a surrogate outcome in CKD: report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis 54:205–226

    Article  PubMed  Google Scholar 

  17. Pugliese G, Solini A, Bonora E, Fondelli C, Orsi E, Nicolucci A, Penno G, RIACE Study Group (2014) Chronic kidney disease in type 2 diabetes: lessons from the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study. Nutr Metab Cardiovasc Dis 24:815–822

    Article  CAS  PubMed  Google Scholar 

  18. Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Trevisan R, Vedovato M, Gruden G, Laviola L, Nicolucci A, Pugliese G, Renal Insufficiency And Cardiovascular Events (RIACE) study, group (2013) Gender differences in cardiovascular disease risk factors, treatments and complications in patients with type 2 diabetes: the RIACE Italian Multicentre Study. J Intern Med 274:176–191

    Article  CAS  PubMed  Google Scholar 

  19. Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285:2486–2497

  20. Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Trevisan R, Vedovato M, Gruden G, Cavalot F, Cignarelli M, Laviola L, Morano S, Nicolucci A, Pugliese G, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group (2011) Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens 29:1802–1809

    Article  CAS  PubMed  Google Scholar 

  21. Pugliese G, Solini A, Fondelli C, Trevisan R, Vedovato M, Nicolucci A, Penno G, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group (2011) Reproducibility of albuminuria in type 2 diabetic subjects. Findings from the Renal Insufficiency And Cardiovascular Events (RIACE) Study. Nephrol Dial Transpl 26:3950–3954

    Article  CAS  Google Scholar 

  22. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pugliese G (2014) Updating the natural history of diabetic nephropathy. Acta Diabetol 51:905–915

    Article  CAS  PubMed  Google Scholar 

  24. Penno G, Solini A, Zoppini G, Orsi E, Zerbini G, Trevisan R, Gruden G, Cavalot F, Laviola L, Morano S, Nicolucci A, Pugliese G, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group (2012) Rate and determinants of association between advanced retinopathy and chronic kidney disease in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicenter Study. Diabetes Care 35:2317–2323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Klausen KP, Scharling H, Jensen G, Jensen JS (2005) New definition of microalbuminuria in hypertensive subjects: association with incident coronary heart disease and death. Hypertension 46:33–37

    Article  CAS  PubMed  Google Scholar 

  26. Kovesdy CP, Lott EH, Lu JL, Malakauskas SM, Ma JZ, Molnar MZ, Kalantar-Zadeh K (2013) Outcomes associated with microalbuminuria: effect modification by chronic kidney disease. J Am Coll Cardiol 61:1626–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ra H, Yoo JH, Ban WH, Song HC, Lee SS, Kim SR, Yoo SJ, Kim YS, Choi EJ, Kim YK (2012) Predictors for diabetic retinopathy in normoalbuminuric people with type 2 diabetes mellitus. Diabetol Metab Syndr 4:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Karoli R, Fatima J, Shukla V, Garg P, Ali A (2013) Predictors of diabetic retinopathy in patients with type 2 diabetes who have normoalbuminuria. Ann Med Health Sci Res 3:536–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Klein R, Zinman B, Gardiner R, Suissa S, Donnelly SM, Sinaiko AR, Kramer MS, Goodyer P, Moss SE, Strand T, Mauer M, Renin-Angiotensin System Study (2005) The relationship of diabetic retinopathy to preclinical diabetic glomerulopathy lesions in type 1 diabetic patients: the Renin-Angiotensin System Study. Diabetes 54:527–533

    Article  CAS  PubMed  Google Scholar 

  30. Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, Batlle D (2002) Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med 347:797–805

    Article  CAS  PubMed  Google Scholar 

  31. Knudsen ST, Laugesen E, Hansen KW, Bek T, Mogensen CE, Poulsen PL (2009) Ambulatory pulse pressure, decreased nocturnal blood pressure reduction and progression of nephropathy in type 2 diabetic patients. Diabetologia 52:698–704

    Article  CAS  PubMed  Google Scholar 

  32. Bruno RM, Penno G, Daniele G, Pucci L, Lucchesi D, Stea F, Landini L, Cartoni G, Taddei S, Ghiadoni L, Del Prato S (2012) Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 55:1847–1855

    Article  CAS  PubMed  Google Scholar 

  33. Knudsen ST, Jeppesen P, Frederiksen CA, Andersen NH, Bek T, Ingerslev J, Mogensen CE, Poulsen PL (2007) Endothelial dysfunction, ambulatory pulse pressure and albuminuria are associated in Type 2 diabetic subjects. Diabet Med 24:911–915

    Article  CAS  PubMed  Google Scholar 

  34. Arnlöv J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, Benjamin EJ, D’Agostino RB, Vasan RS (2005) Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation 112:969–975

    Article  PubMed  Google Scholar 

  35. Roglic G, Colhoun HM, Stevens LK, Lemkes HH, Manes C, Fuller JH (1998) Parental history of hypertension and parental history of diabetes and microvascular complications in insulin-dependent diabetes mellitus: the EURODIAB IDDM complications study. Diabet Med 15:418–426

    Article  CAS  PubMed  Google Scholar 

  36. Canani LH, Gerchman F, Gross JL (1998) Increased familial history of arterial hypertension, coronary heart disease, and renal disease in Brazilian type 2 diabetic patients with diabetic nephropathy. Diabetes Care 21:1545–1550

    Article  CAS  PubMed  Google Scholar 

  37. Janssen WM, Hillege H, Pinto-Sietsma SJ, Bak AA, De Zeeuw D, de Jong PE, PREVEND Study Group (2000) Prevention of Renal and Vascular End-stage Disease. Low levels of urinary albumin excretion are associated with cardiovascular risk factors in the general population. Clin Chem Lab Med 38:1107–1110

    Article  CAS  PubMed  Google Scholar 

  38. Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR (2012) Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med 172:761–769

    Article  PubMed Central  PubMed  Google Scholar 

  39. Perkovic V, Heerspink HL, Chalmers J, Woodward M, Jun M, Li Q, MacMahon S, Cooper ME, Hamet P, Marre M, Mogensen CE, Poulter N, Mancia G, Cass A, Patel A, Zoungas S, ADVANCE Collaborative Group (2013) Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int 83:517–523

    Article  CAS  PubMed  Google Scholar 

  40. de Boer IH, Rue TC, Cleary PA, Lachin JM, Molitch ME, Steffes MW, Sun W, Zinman B, Brunzell JD, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, White NH, Danis RP, Davis MD, Hainsworth D, Hubbard LD, Nathan DM (2011) Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort. Arch Intern Med 171:412–420

    Article  PubMed Central  PubMed  Google Scholar 

  41. Solbu MD, Kronborg J, Eriksen BO, Jenssen TG, Toft I (2008) Cardiovascular risk-factors predict progression of urinary albumin-excretion in a general, non-diabetic population: a gender-specific follow-up study. Atherosclerosis 201:398–406

    Article  CAS  PubMed  Google Scholar 

  42. Sacks FM, Hermans MP, Fioretto P, Valensi P, Davis T, Horton E, Wanner C, Al-Rubeaan K, Aronson R, Barzon I, Bishop L, Bonora E, Bunnag P, Chuang LM, Deerochanawong C, Goldenberg R, Harshfield B, Hernández C, Herzlinger-Botein S, Itoh H, Jia W, Jiang YD, Kadowaki T, Laranjo N, Leiter L, Miwa T, Odawara M, Ohashi K, Ohno A, Pan C, Pan J, Pedro-Botet J, Reiner Z, Rotella CM, Simo R, Tanaka M, Tedeschi-Reiner E, Twum-Barima D, Zoppini G, Carey VJ (2014) Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation 129:999–1008

    Article  CAS  PubMed  Google Scholar 

  43. Esteghamati A, Rashidi A, Khalilzadeh O, Ashraf H, Abbasi M (2010) Metabolic syndrome is independently associated with microalbuminuria in type 2 diabetes. Acta Diabetol 47:125–130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the RIACE Investigators for participating in this study (see the complete list as online Appendix).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Giuseppe Pugliese.

Ethics declarations

Funding sources

This work was supported by the Research Foundation of the Italian Society of Diabetology (Fo.Di.Ri) and the Diabetes, Endocrinology, and Metabolism (DEM) Foundation, and by unconditional grants from Eli-Lilly, Takeda, Chiesi Farmaceutici and Boehringer-Ingelheim. The sponsors had no role in design and conduct of the study; collection, management, and interpretation of the data; or preparation, review, and approval of the manuscript.

Conflict of interest

The authors declare no relevant conflict of interest to disclose.

Ethical standard

The study was conducted in accordance with the 1964 Declaration of Helsinki and its later amendments. The protocol was approved by the locally appointed ethics committees, and participants gave informed consent.

Human and Animal Rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Antonio Secchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 65 kb)

Supplementary material 2 (DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penno, G., Solini, A., Zoppini, G. et al. Independent correlates of urinary albumin excretion within the normoalbuminuric range in patients with type 2 diabetes: The Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study. Acta Diabetol 52, 971–981 (2015). https://doi.org/10.1007/s00592-015-0789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-015-0789-x

Keywords

Navigation