Skip to main content

Advertisement

Log in

Human adipose-derived stem cells: Potential clinical applications in surgery

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Regenerative medicine is emerging as a rapidly evolving field of research and therapeutics. Stem cells hold great promise for future translational research and clinical applications in many fields. Much research has focused on mesenchymal stem cells isolated from bone marrow in vitro and in vivo; however, bone marrow procurement causes considerable discomfort to the patient and yields a relatively small number of harvested cells. By contrast, adipose tissue represents an abundant and easily accessible source of adult stem cells, termed adipose-derived stem cells (ADSCs), with the ability to equally differentiate along multiple lineage pathways. These stem cells have angiogenic properties, possibly because of their secretion of cytokines. They may also play a role in healing acute and chronic tissue damage. Subsequently, they have a wide range of potential clinical implications. This article reviews the potential preclinical and clinical applications of mesenchymal stem cells, especially ADSCs, in surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. J Biomech Eng 2000;122:570–575.

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–676.

    Article  CAS  PubMed  Google Scholar 

  3. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966;16:381–390.

    CAS  PubMed  Google Scholar 

  4. Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 2004;40:1304–1311.

    Article  PubMed  Google Scholar 

  5. Terai S, Ishikawa T, Omori K, Aoyama K, Marumoto Y, Urata Y, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 2006;24:2292–2298.

    Article  CAS  PubMed  Google Scholar 

  6. Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 2008;134:211–221.

    Article  Google Scholar 

  7. Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2008;2:169–183.

    Article  CAS  PubMed  Google Scholar 

  8. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008;2:313–319.

    Article  CAS  PubMed  Google Scholar 

  9. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005;129:118–129.

    Article  PubMed  Google Scholar 

  10. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294–1301.

    Article  CAS  PubMed  Google Scholar 

  11. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell 2008;135:240–249.

    Article  CAS  PubMed  Google Scholar 

  12. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, et al. White fat progenitor cells reside in the adipose vasculature. Science 2008;322:583–586.

    Article  CAS  PubMed  Google Scholar 

  13. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211–228.

    Article  CAS  PubMed  Google Scholar 

  14. Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 2006;13:77–81.

    PubMed  Google Scholar 

  15. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells 2007;25:818–827.

    Article  PubMed  Google Scholar 

  16. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007;100:1249–1260.

    Article  CAS  PubMed  Google Scholar 

  17. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 2009;79:235–244.

    Article  PubMed  Google Scholar 

  18. Yoho RA, Romaine JJ, O’Neil D. Review of the liposuction, abdominoplasty, and face-lift mortality and morbidity risk literature. Dermatol Surg 2005;31:733–743.

    Article  CAS  PubMed  Google Scholar 

  19. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006;24:150–154.

    Article  CAS  PubMed  Google Scholar 

  20. Garcïa-Olmo D, Garcïa-Arranz M, Herreros D, Pascual I, Peiro C, Rodrïguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 2005;48:1416–1423.

    Article  PubMed  Google Scholar 

  21. Ogawa S, Miyagawa S. Potentials of regenerative medicine for liver disease. Surg Today 2009;39:1019–1025.

    Article  PubMed  Google Scholar 

  22. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000;97:11307–11312.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002 109:1291–1302.

    CAS  PubMed  Google Scholar 

  24. Aurich I, Mueller LP, Aurich H, Luetzkendorf J, Tisljar K, Dollinger MM, et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 2007;56:405–415.

    Article  CAS  PubMed  Google Scholar 

  25. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007;46:219–228.

    Article  CAS  PubMed  Google Scholar 

  26. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, et al. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 2008;26:2705–2712.

    Article  CAS  PubMed  Google Scholar 

  27. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, et al. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastroenterol Hepatol 2009;24:70–77.

    Article  CAS  PubMed  Google Scholar 

  28. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 2009;58:570–581.

    Article  CAS  PubMed  Google Scholar 

  29. Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, Tamura T, et al. Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy 2008;10:417–426.

    Article  CAS  PubMed  Google Scholar 

  30. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med 2006;355:1318–1330.

    Article  CAS  PubMed  Google Scholar 

  31. Ikemoto T, Noguchi H, Shimoda M, Naziruddin B, Jackson A, Tamura Y, et al. Islet cell transplantation for the treatment of type 1 diabetes in the USA. J Hepatobiliary Pancreat Surg 2009;16:118–123.

    Article  PubMed  Google Scholar 

  32. Ikemoto T, Noguchi H, Fujita Y, Takita M, Shimoda M, Sugimoto K, et al. New stepwise cooling system for short-term porcine islet preservation. Pancreas 2010;39:960–963.

    Article  PubMed  Google Scholar 

  33. Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000;97:7999–8004.

    Article  CAS  PubMed  Google Scholar 

  34. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 2004;22:1115–1124.

    Article  CAS  PubMed  Google Scholar 

  35. Liu M, Han ZC. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 2008;12:1155–1168.

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, et al. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 2007;211:36–44.

    Article  CAS  PubMed  Google Scholar 

  37. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S. Generation of insulinproducing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007;25:2837–2844.

    Article  CAS  PubMed  Google Scholar 

  38. Lee J, Han DJ, Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun 2008;375:547–551.

    Article  CAS  PubMed  Google Scholar 

  39. Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW. In vitro transdifferentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun. 2005;330:1299–1305.

    Article  CAS  PubMed  Google Scholar 

  40. Lin G, Wang G, Liu G, Yang LJ, Chang LJ, Lue TF, et al. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev 2009;18:1399–1406.

    Article  CAS  PubMed  Google Scholar 

  41. Ikemoto T, Shimada M, Komatsu M, Utsunomiya T, Imura S, Morine Y, et al. Effect of human adipose-tissue derivedmesenchymal stem cell on streptozotocin-induced diabetic nude mice [abstract]. HPB 2010;12:102.

    Google Scholar 

  42. Couri CE, Oliveira MC, Stracieri AB, Moraes DA, Pieroni F, Barros GM, et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2009;301:1573–1579.

    Article  CAS  PubMed  Google Scholar 

  43. Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 2009;52:79–86.

    PubMed  Google Scholar 

  44. Yamamoto T, Gotoh M, Hattori R, Toriyama K, Kamei Y, Iwaguro H, et al. Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases. Int J Urol 2010;17:75–82.

    Article  PubMed  Google Scholar 

  45. Safford KM, Rice HE. Stem cell therapy for neurologic disorders: therapeutic potential of adipose-derived stem cells. Curr Drug Targets 2005;6:57–62.

    Article  CAS  PubMed  Google Scholar 

  46. Bai X, Yan Y, Song YH, Seidensticker M, Rabinovich B, Metzele R, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 2010;31:489–501.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang S, Wang D, Estrov Z, Raj S, Willerson JT, Yeh ET. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 2004;110:3803–3807.

    Article  PubMed  Google Scholar 

  48. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, et al. Cell fusion is the principal source of bonemarrow-derived hepatocytes. Nature 2003;422:897–901.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utsunomiya, T., Shimada, M., Imura, S. et al. Human adipose-derived stem cells: Potential clinical applications in surgery. Surg Today 41, 18–23 (2011). https://doi.org/10.1007/s00595-010-4415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-010-4415-9

Key words

Navigation