Skip to main content
Log in

Fibroblast Growth Factor, A Review

  • Published:
Kidney

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sarah Seiler. Clinical relevance of FGF-23 in chronic kidney disease. Kidney Int. 2009;76:S34–42.

    Article  Google Scholar 

  2. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with CKD: results of the study to evaluate early kidney disease. Kidney Int. 2007;71:31–8.

    Article  CAS  PubMed  Google Scholar 

  3. Isakova I, Guitierrez OM, Chang Y, et al. Phosphorus binders and survival on hemodialysis. J Am Soc Nephrology. 2009;20:388–96.

    Article  CAS  Google Scholar 

  4. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000;277:494–8.

    Article  CAS  PubMed  Google Scholar 

  6. Seiler S et al. FGF-23 in CKD. Kidney Int. 2009;76:S34–42.

    Article  Google Scholar 

  7. Qin C, D’Souza R, Feng JQ. Dentin matrix protein 1 (DMP1): New and important roles for biomineralization and phosphate homeostasis. J Dent Res. 2007;86(12):1134–41.

    Article  CAS  PubMed  Google Scholar 

  8. Wesseling-Perry K, Pereira RC, Wang H, et al. Relationship between plasma FGF-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endorinology Metab. 2009;94:511–7.

    Article  CAS  Google Scholar 

  9. Baum M, Schiavi S, Dwarakananath V, et al. Effect of Fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int. 2005;68:1148–53.

    Article  CAS  PubMed  Google Scholar 

  10. Miyamoto K, Ito M, Kuwahata M, et al. Inhibition of intestinal sodium-dependent inorganic phosphate transport by FGF-23. Ther Apher Dial. 2005;9:331–5.

    Article  CAS  PubMed  Google Scholar 

  11. Marsell R, Grundberg E. Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men. Eur J Endocrinol. 2008;158:125–9.

    Article  CAS  PubMed  Google Scholar 

  12. Larsson T, Nisbeth U, Ljunggren O, et al. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 2003;64:2272–9.

    Article  CAS  PubMed  Google Scholar 

  13. Schouten BJ, Hunt PJ. FGF23 elevation and hypophosphatemia after IV Iron polymaltose: a prospective study. J clin Endocrinol Metab. 2009;94:2332–7.

    Article  CAS  PubMed  Google Scholar 

  14. Shamida T, Hasegawa H, Yamakazi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.

    Article  Google Scholar 

  15. Seufert J, Ebert K, Muller J, et al. Octreotide therapy for tumor-induced osteomalacia. N Engl J Med. 2001;345:1883–8.

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki Y, Okazaki R. Increased circulating levels of biologically active full length FGF23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab. 2002;87:4957–60.

    Article  CAS  PubMed  Google Scholar 

  17. Jonnson KB, Zahradnik R, Larsson T, White KE. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med. 2003;345:1656–63.

    Article  Google Scholar 

  18. Liu S, Zhou J. Pathogenic role of FGF 23 in DMP-1 null mice. American Journal of Physiology. Endocrinology and metabolism. 2008;295:254–61.

    Google Scholar 

  19. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005;14:385–90.

    Article  CAS  PubMed  Google Scholar 

  20. Imanishi Y, Inaba M, Nakatsuka K, et al. FGF-23 in patients with end-stage-renal disease on hemodialysis. Kidney Int. 2004;65:1943–6.

    Article  CAS  PubMed  Google Scholar 

  21. Danilo F, Barbara K. J Am Soc Nephrol. 2007;18:2600–8.

    Article  Google Scholar 

  22. Gutierrez OM, Januzzi JL, Isakova T, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119:2545–52.

    Article  CAS  PubMed  Google Scholar 

  23. Hsu HJ, Wu MS. Fibroblast growth factor 23: A possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci. 2009;337:116–22.

    Article  PubMed  Google Scholar 

  24. Mirza MA, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205:385–90.

    Article  CAS  PubMed  Google Scholar 

  25. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism. Mortality and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace C. Chibesakunda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chibesakunda, G.C., Brecklin, C.S. Fibroblast Growth Factor, A Review. Kidney 19, 290–293 (2010). https://doi.org/10.1007/s00596-010-0178-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00596-010-0178-y

Keywords

Navigation