Skip to main content
Log in

Topological Phase and Half-Integer Orbital Angular Momenta in Circular Quantum Dots

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We show that there exists a non-trivial topological phase in circular two-dimensional quantum dots with an odd number of electrons. The possible non-zero value of this phase is explained by axial symmetry of two-dimensional quantum systems. The particular value of this phase (\(\pi \)) is fixed by T-invariance and the Pauli exclusion principle and leads to half-integer values of the angular orbital momentum for ground states of such systems. This conclusion agrees with the experimental data for ground-state energies of few-electron circular quantum dots in perpendicular magnetic field (Schmidt et al. in Phys Rev B 51:5570, 1995). Hence, these data may be considered as the first experimental evidence for the existence of topological phase leading to half-integer quantization of the orbital angular momentum in circular quantum dots with an odd number of electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1982)

    MATH  Google Scholar 

  2. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  3. Pauli, W.: Über ein Kriterium für Ein- oder Zweiwertigkeit der Eigenfunktionenin der Wellenmechanik. Helv. Phys. Acta. 12, 147 (1939)

    MATH  Google Scholar 

  4. Smirnov, V.I.: A Course of Higher Mathematics, vol. 5. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  5. Wightman, A.S.: Introduction to Some Aspects of the Relativistic Dynamics of Quantized Fields. Princeton Press, Princeton (1964)

    Google Scholar 

  6. Richtmyer, R.D.: Principle of Advanced Mathematical Physics. Springer, New York (1978)

    Book  MATH  Google Scholar 

  7. van Vinter, C.: Orbital angular momentum and group representations. Ann. Phys. 47, 232 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hamermesh, M.: Group Theory and Its Applications to Physical Problems. Addison Wesley, Reading (1964)

    MATH  Google Scholar 

  9. Kowalski, K., Podlaski, K., Rembielinski, J.: Quantum mechanics of a free particle on a plane with an extracted point. Phys. Rev. A 66, 032118 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Wigner, E.P.: Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    MATH  Google Scholar 

  11. Blatt, J.M., Weisskopf, V.F.: Theoretical Nuclear Physics. Springer, New York (1979)

    Book  MATH  Google Scholar 

  12. Schmidt, T., et al.: Quantum-dot ground states in a magnetic field studied by single-electron tunneling spectroscopy on double-barrier heterostructures. Phys. Rev. B 51, 5570 (1995)

    Article  ADS  Google Scholar 

  13. Mur, V.D., Narozhny, N.B., Petrosyan, A.N., Lozovik, YuE: Quantum dot version of topological phase:half-integer orbital angular momenta. Pis’ma v ZhETF 88, 786 (2008)

    Google Scholar 

  14. Chen, J.-H., Liu, J.-L.: A numerical method for exact diagonalization of semiconductor quantum dot model. Comput. Phys. Comm. 181, 937 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chakraborty, T.: Quantum Dots: A Survey of the Properties of Artificial Atoms. Elsevier, Amsterdam (1999)

    Book  Google Scholar 

  16. Ashoori, R.C., Stormer, H.L., Weiner, J.S., Pfeiffer, L.N.: N-electron ground state energies of a quantum dot in magnetic field. Phys. Rev. Lett. 71, 613 (1993)

    Article  ADS  Google Scholar 

  17. Ashoori, R.C.: Electrons in artificial atoms. Nature 379, 413 (1996)

    Article  ADS  Google Scholar 

  18. Kouwenhoven, L.P., Austing, D.G., Tarucha, S.: Few-electron quantum dots. Rep. Prog. Phys. 64, 701 (2001)

    Article  ADS  Google Scholar 

  19. Lozovik, Yu. E, Mandelshtam, V.A.: Classical and quantum melting of a Coulomb cluster in a trap. Phys. Lett. A 165, 469 (1992)

  20. Lozovik, Yu. E, Mur, V.D., Narozhny, N.B.: 1/Q-expansion for energy spectrum of quantum dots. J. Exp. Teor. Phys. 96, 932 (2003)

  21. Hawrilyak, P.: Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: theory and experiment. Phys. Rev. Lett. 20, 3347 (1993)

    Article  ADS  Google Scholar 

  22. Bruce, N.A., Maksym, P.A.: Quantum states of interacting electrons in a real quantum dot. Phys. Rev. B 61, 4718 (2000)

    Article  ADS  Google Scholar 

  23. Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002)

    Article  ADS  Google Scholar 

  24. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (Non-relativistic Theory). Butterworth-Heinemann, Oxford (1976)

    MATH  Google Scholar 

  25. Cronin, J.A., Greenberg, D.F., Telegdi, V.F.: University of Chicago Graduate Problems in Physics with Solutions. Addison-Wesley, Massachusetts (1967)

    Google Scholar 

  26. Bateman, H., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  27. Lyubarskiy, G.Ya.: The Application of Group Theory in Physics. Pergamon Press, Oxford (1960)

    Google Scholar 

  28. Fock, V.A.: A note on quantization of a harmonic oscillator in a magnetic field. Z. Phys. 47, 446 (1928)

    Article  ADS  Google Scholar 

  29. Darwin, C.G.: The diamagnetism of the free electron. Math. Proc. Camb. Phil. Soc. 27, 86 (1930)

    Article  ADS  MATH  Google Scholar 

  30. Cramer, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  31. Dirac, P. A. M.: Quantum mechanics and relativistic field theory. Lectures on Mathematics and Physics 1. TATA Institute of Fundamental Research, Bombay (1955)

  32. Pauli, W.: General Principles of Quantum Mechanics. Springer, Berlin (1980)

    Book  Google Scholar 

  33. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Company, San Francisco (1973)

    Google Scholar 

  34. Van Vleck, J.H.: On \(\sigma \)-type doubling and electron spin in the spectra of diatomic molecules. Phys. Rev. 33, 467 (1929)

    Article  ADS  MATH  Google Scholar 

  35. von Busch, H., et al.: Unambiguous proof for Berry’s phase in the sodium trimmer: analysis of the transition \(A^2 E^{^{\prime \prime }}\leftarrow X^2 E^{^{\prime }}\). Phys. Rev. Lett. 81, 4584 (1998)

    Article  ADS  Google Scholar 

  36. Berry, M.: Quantum phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  37. Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  38. Shapere, A., Wilczek, F.: Geometric Phases in Physics. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  39. Vinitskii, S.I., et al.: Topological phases in quantum mechanics and polarization optics. UFN 33, 403 (1990)

    MathSciNet  Google Scholar 

  40. Zwanziger, J.W., Koenig, M., Pines, A.: Berry’s phase. Annu. Rev. Phys. Chem. 41, 601 (1990)

    Article  ADS  Google Scholar 

  41. Moody, J., Shapere, A., Wilczek, F.: Realizations of magnetic-monopole gauge fields: diatoms and spin precession. Phys. Rev. Lett. 56, 893 (1986)

    Article  ADS  Google Scholar 

  42. Case, K.M.: Singular potentials. Phys. Rev. 80, 797 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Petrashen, M.I., Trifonof, E.D.: Applications of Group Theory in Quantum Mechanics. MIT Press, Cambridge (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuleshov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleshov, V.M., Mur, V.D., Narozhny, N.B. et al. Topological Phase and Half-Integer Orbital Angular Momenta in Circular Quantum Dots. Few-Body Syst 57, 1103–1126 (2016). https://doi.org/10.1007/s00601-016-1136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1136-7

Navigation