Skip to main content
Log in

The Relevance of Pion-Exchange Contributions Versus Contact Terms in the Chiral Effective Field Theory Description of Nucleon–Nucleon Scattering

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The standard way to demonstrate the relevance of chiral symmetry for the NN interaction is to consider higher partial waves of NN scattering which are controlled entirely by chiral pion-exchanges (since contacts vanish). However, in applications of NN-potentials to nuclear structure and reactions, the lower partial waves are the important ones, making the largest contributions. Lower partial waves are sensitive to the short-range potential, and so, when the short-range contacts were to dominate over the chiral pion-contributions in lower partial waves, then the predictions from “chiral potentials” would have little to do with chiral symmetry. To address this issue, we investigate systematically the role of the (chiral) one- and two-pion exchanges, on the one hand, and the effect of the contacts, on the other hand, in the lower partial waves of NN scattering. We are able to clearly identify the signature of chiral symmetry in lower partial waves. Our study has also a pedagogical spin-off as it demonstrates in detail how the reproduction of the lower partial-wave phase shifts comes about from the various ingredients of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)

    Article  ADS  Google Scholar 

  2. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  3. H.W. Hammer, S. Kőnig, U. van Kolck, Rev. Mod. Phys. 92, 025004 (2020)

    Article  ADS  Google Scholar 

  4. M. Piarulli, L. Girlanda, R. Schiavilla, R. Navarro Pérez, J.E. Amaro, E. Ruiz Arriola, Phys. Rev. C 91, 024003 (2015)

    Article  ADS  Google Scholar 

  5. M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato, L.E. Marcucci, S.C. Pieper, M. Viviani, R.B. Wiringa, Phys. Rev. C 94, 054007 (2016)

    Article  ADS  Google Scholar 

  6. B.D. Carlsson et al., Phys. Rev. X 6, 011019 (2016)

    Google Scholar 

  7. D.R. Entem, R. Machleidt, Y. Nosyk, Phys. Rev. C 96, 024004 (2017)

    Article  ADS  Google Scholar 

  8. P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018)

    Article  ADS  Google Scholar 

  9. A. Ekstrőm, G. Hagen, T.D. Morris, T. Papenbrock, P.D. Schwartz, Phys. Rev. C 97, 024332 (2018)

    Article  ADS  Google Scholar 

  10. P. Navratil, R. Roth, S. Quaglioni, Phys. Rev. C 82, 034609 (2010)

    Article  ADS  Google Scholar 

  11. M. Viviani, L. Girlanda, A. Kievsky, L.E. Marcucci, Phys. Rev. Lett. 111, 172302 (2013)

    Article  ADS  Google Scholar 

  12. J. Golak et al., Eur. Phys. J. A 50, 177 (2014)

    Article  ADS  Google Scholar 

  13. L. Girlanda, A. Kievsky, M. Viviani, L.E. Marcucci, Phys. Rev. C 99, 054003 (2019)

    Article  ADS  Google Scholar 

  14. P. Navratil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007)

    Article  ADS  Google Scholar 

  15. R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navratil, Phys. Rev. Lett. 107, 072501 (2011)

    Article  ADS  Google Scholar 

  16. R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navratil, Phys. Rev. Lett. 109, 052501 (2012)

    Article  ADS  Google Scholar 

  17. H. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, T. Papenbrock, Phys. Rev. Lett. 108, 242501 (2012)

    Article  ADS  Google Scholar 

  18. H. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, T. Papenbrock, Phys. Rev. Lett. 109, 032502 (2012)

    Article  ADS  Google Scholar 

  19. B.R. Barrett, P. Navratil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013)

    Article  ADS  Google Scholar 

  20. H. Hergert, S.K. Bogner, S. Binder, A. Calci, J. Langhammer, R. Roth, A. Schwenk, Phys. Rev. C 87, 034307 (2013)

    Article  ADS  Google Scholar 

  21. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Rept. Prog. Phys. 77, 096302 (2014)

    Article  ADS  Google Scholar 

  22. S. Binder, J. Langhammer, A. Calci, R. Roth, Phys. Lett. B 736, 119 (2014)

    Article  ADS  Google Scholar 

  23. G. Hagen, G.R. Jansen, T. Papenbrock, Phys. Rev. Lett. 117, 172501 (2016)

    Article  ADS  Google Scholar 

  24. J. Simonis, K. Hebeler, J.D. Holt, J. Menendez, A. Schwenk, Phys. Rev. C 93, 011302 (2016)

    Article  ADS  Google Scholar 

  25. J. Simonis, S.R. Stroberg, K. Hebeler, J.D. Holt, A. Schwenk, Phys. Rev. C 96, 014303 (2017)

    Article  ADS  Google Scholar 

  26. T.D. Morris, J. Simonis, S.R. Stroberg, C. Stumpf, G. Hagen, J.D. Holt, G.R. Jansen, T. Papenbrock, R. Roth, A. Schwenk, Phys. Rev. Lett. 120, 152503 (2018)

    Article  ADS  Google Scholar 

  27. V. Soma, P. Navratil, F. Raimondi, C. Barbieri, T. Duguet, Phys. Rev. C 101, 014318 (2020)

    Article  ADS  Google Scholar 

  28. J. Hoppe, C. Drischler, K. Hebeler, A. Schwenk, J. Simonis, Phys. Rev. C 100, 024318 (2019)

    Article  ADS  Google Scholar 

  29. T. Hűther, K. Vobig, K. Hebeler, R. Machleidt, R. Roth, Phys. Lett. B 808, 135651 (2020)

    Article  Google Scholar 

  30. K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010)

    Article  ADS  Google Scholar 

  31. K. Hebeler, S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Phys. Rev. C 83, 031301(R) (2011)

    Article  ADS  Google Scholar 

  32. L. Coraggio, J.W. Holt, N. Itaco, R. Machleidt, F. Sammarruca, Phys. Rev. C 87, 014322 (2013)

    Article  ADS  Google Scholar 

  33. G. Hagen, T. Papenbrock, A. Ekstrőm, K.A. Wendt, G. Baardsen, S. Gandolfi, M. Hjorth-Jensen, C.J. Horowitz, Phys. Rev. C 89, 014319 (2014)

    Article  ADS  Google Scholar 

  34. L. Coraggio, J.W. Holt, N. Itaco, R. Machleidt, L.E. Marcucci, F. Sammarruca, Phys. Rev. C 89, 044321 (2014)

    Article  ADS  Google Scholar 

  35. F. Sammarruca, L. Coraggio, J.W. Holt, N. Itaco, R. Machleidt, L.E. Marcucci, Phys. Rev. C 91, 054311 (2015)

    Article  ADS  Google Scholar 

  36. R. Machleidt, F. Sammarruca, Phys. Scr. 91, 083007 (2016)

    Article  ADS  Google Scholar 

  37. C. Drischler, A. Carbone, K. Hebeler, A. Schwenk, Phys. Rev. C 94, 054307 (2016)

    Article  ADS  Google Scholar 

  38. K. Hebeler, H. Krebs, E. Epelbaum, J. Golak, R. Skibinski, Phys. Rev. C 91, 044001 (2015)

    Article  ADS  Google Scholar 

  39. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)

    Article  ADS  Google Scholar 

  40. F. Sammarruca, R. Millerson, Exploring the relationship between nuclear matter and finite nuclei with chiral two- and three-nucleon forces, arXiv:2005.01958 [nucl-th]

  41. W.G. Jiang, A. Ekstrőm, C. Forssén, G. Hagen, G.R. Jansen, T. Papenbrock, Accurate bulk properties of nuclei from \(A = 2\) to \(\infty \) from potentials with \(\Delta \) isobars, arXiv:2006.16774 [nucl-th]

  42. R. Machleidt, F. Sammarruca, Eur. Phys. J. A 56, 95 (2020)

    Article  ADS  Google Scholar 

  43. N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758 (1997)

    Article  ADS  Google Scholar 

  44. D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C 91, 014002 (2015)

    Article  ADS  Google Scholar 

  45. D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C 92, 064001 (2015)

    Article  ADS  Google Scholar 

  46. E. Epelbaum, H. Krebs, U.-G. Meißner, Eur. Phys. J. A 51, 53 (2015)

    Article  ADS  Google Scholar 

  47. S. Weinberg, Phys. Lett. B251, 288 (1990)

    Article  ADS  Google Scholar 

  48. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  49. P.A. Zyla, et al., (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

  50. N. Kaiser, Phys. Rev. C 64, 057001 (2001)

    Article  ADS  Google Scholar 

  51. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Phys. Rev. Lett. 115, 192301 (2015)

    Article  ADS  Google Scholar 

  52. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Phys. Rep. 625, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  53. E. Epelbaum, W. Glöckle, U.-G. Meißner, Eur. Phys. J. A 19, 125 (2004)

    Article  ADS  Google Scholar 

  54. N. Kaiser, Phys. Rev. C 61, 014003 (2000)

    Article  ADS  Google Scholar 

  55. N. Kaiser, Phys. Rev. C 62, 024001 (2000)

    Article  ADS  Google Scholar 

  56. R. Blankenbecler, R. Sugar, Phys. Rev. 142, 1051 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  57. V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, J.J. de Swart, Phys. Rev. C 48, 792 (1993)

    Article  ADS  Google Scholar 

  58. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 76, 025209 (2007)

    Article  ADS  Google Scholar 

  59. J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U.S. Department of Energy under Grant No. DE-FG02-03ER41270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Machleidt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, H., Machleidt, R. The Relevance of Pion-Exchange Contributions Versus Contact Terms in the Chiral Effective Field Theory Description of Nucleon–Nucleon Scattering. Few-Body Syst 62, 1 (2021). https://doi.org/10.1007/s00601-020-01587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01587-9

Navigation