Skip to main content
Log in

Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Palladium nanocubes (Pd-NCs) were deposited on a reduced graphene oxide (rGO) support and then applied to modify a glassy carbon electrode (GCE) to obtain a non-enzymatic electrochemical sensor for dopamine (DA). In a comparison made by using copper underpotential deposition and a stripping method, it is shown that the Pd-NCs are evenly loaded on rGO and hence provide a surface area that is 2.42 times larger than that of rGO-free Pd-NCs. The modified GCE displays enhanced catalytic activity in catalyzing the oxidation of DA, best at a working potential of 0.25 V (vs. Ag/AgCl (3 M KCl)). The GCE modified with rGO-supported Pd-NCs showed remarkable selectivity over uric acid and ascorbic acid, a sensitivity to DA of 0.943 μA∙mM−1∙cm−2, and a 7.0 μM detection limit (at an SNR of 3).

Palladium nanocubes (Pd-NCs) on reduced graphene oxide (rGO) display higher activity than rGO-free Pd-NCs in dopamine oxidation. The oxidation current for dopamine is linear within the 20–220 μM concentration range at a 0.943 μA∙mM−1∙cm−2 sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Hefco V, Yamada K, Hefco A, Hritcu L, Tiron A, Nabeshima T (2003) Role of the mesotelencephalic dopamine system in learning and memory processes in the rat. Eur J Pharmacol 475:55–60

    Article  CAS  Google Scholar 

  2. Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459–1474

    Article  CAS  Google Scholar 

  3. Schltz KN, Kennedy RT (2008) Time-resolved microdialysis for in vivo neurochemical measurements and other applications. Annu Rev Anal Chem 1:627–661

    Article  Google Scholar 

  4. Uutela P, Karhu L, Piepponen P, Kaenmaki M, Ketola RA, Kostiainen R (2009) Discovery of dopamine glucuronide in rat and mouse brain microdialysis samples using liquid chromatography tandem mass spectrometry. Anal Chem 81:427–434

    Article  CAS  Google Scholar 

  5. Syslova K, Rambousek L, Kuzma M, Najmanova V, Bubenikova-Valesova V, Slamberova R, Kacer P (2011) Monitoring of dopamine and its metabolites in brain microdialysates: method combining freeze-drying with liquid chromatography-tandem mass spectrometry. J Chromatogr A 1218:3382–3391

    Article  CAS  Google Scholar 

  6. Gottas A, Ripel A, Boix F, Vindenes V, Morland J, Oiestad EL (2015) Determination of dopamine concentrations in brain extracellular fluid using microdialysis with short sampling intervals, analyzed by Ultra high performance liquid chromatography tandem mass spectrometry. J Pharmacol Toxicol Methods 74:75–79

    Article  CAS  Google Scholar 

  7. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  8. Zhang QL, Feng JX, Wang AJ, Wei J, Lv ZY, Feng JJ (2015) A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen. Microchim Acta 182:589–595

    Article  CAS  Google Scholar 

  9. Zhang HF, Huang FL, Xu SL, Xia Y, Huang W, Li ZL (2013) Fabrication of nanoflower-like dendritic Au and polyaniline composite nanosheets at gas/liquid interface for electrocatalytic oxidation and sensing of ascorbic acid. Electrochem Commun 30:46–50

    Article  Google Scholar 

  10. El-Ads EH, Galal A, Atta NF (2015) Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode - towards a novel non-enzymatic glucose sensor. J Electroanal Chem 749:42–52

    Article  CAS  Google Scholar 

  11. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26:3450–3455

    Article  CAS  Google Scholar 

  12. Palanisamy S, Ku SH, Chen SM (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180:1037–1042

    Article  CAS  Google Scholar 

  13. Yan J, Liu S, Zhang ZQ, He GW, Zhou P, Liang HY, Tian LL, Zhou XM, Jiang HJ (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles. Colloids Surf B: Biointerfaces 111:392–397

    Article  CAS  Google Scholar 

  14. Shao M, Yu T, Odell JH, Jin M, Xia YN (2011) Structural dependence of oxygen reduction reaction palladium nanocrystals. Chem Commun 47:6566–6568

    Article  CAS  Google Scholar 

  15. Arjona N, Goulet MA, Guerra-Balcazar M, Ledesma-Garcia J, Kjeang E, Arriaga LG (2015) Direct formic acid microfluidic fuel cell with Pd nanocubes supported on flow-through microporous electrodes. Ecs Electrochem Lett 4:F24–F28

    Article  CAS  Google Scholar 

  16. Kondo S, Nakamura M, Maki N, Hoshi N (2009) Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J Phys Chem C 113:12625–12628

    Article  CAS  Google Scholar 

  17. Tian JH, Wang FB, Shan ZQ, Wang RJ, Zhang JY (2004) Effect of preparation conditions of Pt/C catalysts on oxygen electrode performance in proton exchange membrane fuel cells. J Appl Electrochem 34:461–467

    Article  CAS  Google Scholar 

  18. Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullon J, Feliu JM (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335

    Article  CAS  Google Scholar 

  19. Lee C-L, Chiou H-P, Liu C-R (2012) Palladium nanocubes enclosed by (100) planes as electrocatalyst for alkaline oxygen electroreduction. Int J Hydrog Energy 37:3993–3997

    Article  CAS  Google Scholar 

  20. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  21. Lee C-L, Chiou H-P (2012) Methanol-tolerant Pd nanocubes for catalyzing oxygen reduction reaction in H2SO4 electrolyte. Appl Catal B Environ 117:204–211

    Article  Google Scholar 

  22. Mao XW, Yang XQ, Rutledge GC, Hatton TA (2014) Ultra-wide-range electrochemical sensing using continuous electrospun carbon nanofibers with high densities of states. ACS Appl Mater Interfaces 6:3394–3405

    Article  CAS  Google Scholar 

  23. Huang JS, Liu Y, Hou HQ, You TY (2008) Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens Bioelectron 24:632–637

    Article  CAS  Google Scholar 

  24. Wang AJ, Feng JJ, Li YF, Xi JL, Dong WJ (2010) In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine. Microchim Acta 171:431–436

    Article  CAS  Google Scholar 

  25. Shao MH, Odell J, Humbert M, Yu TY, Xia YN (2013) Electrocatalysis on shape-controlled palladium nanocrystals: oxygen reduction reaction and formic acid oxidation. J Phys Chem C 117:4172–4180

    Article  CAS  Google Scholar 

  26. Wang X, Wu M, Tang WR, Zhu Y, Wang LW, Wang QJ, He PG, Fang YZ (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode. J Electroanal Chem 695:10–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Science and Technology, Taiwan, for supporting this research financially under Contract No. MOST-103-2221-E-151-054-MY3 as well as Mr. Hsien-Tsan Lin of Regional Instruments Center at National Sun Yat-Sen University for their help with TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Liang Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, YS., Hong, BD. & Lee, CL. Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix. Microchim Acta 183, 905–910 (2016). https://doi.org/10.1007/s00604-015-1668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1668-4

Keywords

Navigation