Skip to main content
Log in

Structure and automorphisms of pure virtual twin groups

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The study of stable isotopy classes of a finite collection of immersed circles without triple or higher intersections on closed oriented surfaces is considered as a planar analogue of virtual knot theory, a far reaching generalisation of classical knot theory. Recent works have established Alexander and Markov theorems in the planar setting. In the classical case, the role of groups is played by twin groups, a class of right-angled Coxeter groups. A new class of groups called virtual twin groups, that extends twin groups in a natural way, plays the role of groups in the virtual case. The virtual twin group \(VT_n\) contains the pure virtual twin group \(PVT_n\), a planar analogue of the pure Artin braid group. In this paper, we prove that the pure virtual twin group \(PVT_n\) is an irreducible right-angled Artin group with trivial center and give it’s precise presentation. We show that \(PVT_n\) has a decomposition as an iterated semi-direct product of infinite rank free groups. We give a complete description of the automorphism group of \(PVT_n\) and establish splitting of natural exact sequences of automorphism groups. As applications, we show that \(VT_n\) is residually finite and \(PVT_n\) has the \(R_\infty \)-property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armstrong, H., Forrest, B., Vogtmann, K.: A presentation for \({\rm Aut}(F_n)\). J. Group Theory 11(2), 267–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardakov, V.G.: The virtual and universal braids. Fund. Math. 184, 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardakov, V., Singh, M., Vesnin, A.: Structural aspects of twin and pure twin groups. Geom. Dedicata 203, 135–154 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartholomew, Andrew, Fenn, Roger, Kamada, Naoko, Kamada, Seiichi: Colorings and doubled colorings of virtual doodles. Topology Appl. 264, 290–299 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartholomew, A., Fenn, R., Kamada, N., Kamada, S.: Doodles on surfaces. J. Knot Theory Ramif. 27(12), 1850071 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartholomew, A., Fenn, R., Kamada, N., Kamada, S.: On Gauss codes of virtual doodles. J. Knot Theory Ramif. 27(11), 1843013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Behrstock, Jason, Charney, Ruth: Divergence and quasimorphisms of right-angled Artin groups. Math. Ann. 352(2), 339–356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cisneros, B., Flores, M., Juyumaya, J., Roque-Márquez, C.: An Alexander-type invariant for doodles. J. Knot Theory Ramif. 31(13), 2250090 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cox, Charles Garnet: Twisted conjugacy in Houghton’s groups. J. Algebra 490, 390–436 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dekimpe, K., Senden, P.: The \(R_{\infty }\)-property for right-angled Artin groups. Topology Appl. 293, 107557 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dekimpe, K., Gonçalves, D.: \(R_{\infty }\)-property for free groups, free nilpotent groups and free solvable groups. Bull. Lond. Math. Soc. 46(4), 737–746 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dekimpe, K., Gonçalves, D.L., Ocampo, O.: The \(R_{\infty }\)-property for pure Artin braid groups. Monatsh. Math. 195, 15–33 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fel’shtyn, A., Gonçalves, D.L.: Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups. Geom. Dedicata 146, 211–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fel’shtyn, A., Nasybullov, T.: The \(R_{\infty }\) and \(S_{\infty }\) properties for linear algebraic groups. J. Group Theory 19(5), 901–921 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fel’shtyn, Alexander, Troitsky, Evgenij: Aspects of the property \(R_{\infty }\). J. Group Theory 18(6), 1021–1034 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fenn, R., Taylor, P.: Introducing doodles, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), pp. 37–43, Lecture Notes in Math., 722, Springer, Berlin (1979)

  17. Godelle, E., Paris, L.: Basic questions on Artin-Tits groups, Configuration spaces, 299–311, CRM Series, 14, Ed. Norm., Pisa (2012)

  18. Godsil, C., Royle, G.: Algebraic graph theory, graduate texts in Mathematics, vol. 207. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  19. Gonçalves, D.L., Nasybullov, T.: On groups where the twisted conjugacy class of the unit element is a subgroup. Comm. Algebra 47(3), 930–944 (2019)

  20. Gonçalves, D., Sankaran, P.: Sigma theory and twisted conjugacy, II: Houghton groups and pure symmetric automorphism groups. Pac. J. Math. 280(2), 349–369 (2016)

  21. Gonçalves, D.L., Sankaran, P.: Twisted conjugacy in PL-homeomorphism groups of the circle. Geom. Dedicata 202, 311–320 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. González, J., León-Medina, J.L., Roque, C.: Linear motion planning with controlled collisions and pure planar braids. Homol. Homotopy Appl. 23(1), 275–296 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gotin, K.: Markov theorem for doodles on two-sphere, (2018), arXiv:1807.05337

  24. Harshman, N.L., Knapp, A.C.: Anyons from three-body hard-core interactions in one dimension. Ann. Phys. 412, 168003 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hsu, T., Wise, D.T.: On linear and residual properties of graph products. Michigan Math. J. 46(2), 251–259 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Juhász, A.: Twisted conjugacy in certain Artin groups, Ischia group theory 2010, pp. 175–195. World Scientific Publications, Hackensack, NJ (2012)

  27. Kauffman, L.H.: Virtual knot theory. European J. Combin. 20(7), 663–690 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kauffman, L.H., Lambropoulou, S.: Virtual braids. Fund. Math. 184, 159–186 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khovanov, M.: New geometrical constructions in low-dimensional topology, (1990), preprint

  30. Khovanov, M.: Doodle groups. Trans. Am. Math. Soc. 349, 2297–2315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Koberda, T.: Right-angled Artin groups and their subgroups. https://users.math.yale.edu/users/koberda/raagcourse.pdf

  32. Laurence, M.R.: A generating set for the automorphism group of a graph group. J. Lond. Math. Soc. 52(2), 318–334 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Magnus, Wilhelm: Über \(n\)-dimensionale gittertransformationen. Acta Math. 64(1), 353–367 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  34. Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory, presentations of groups in terms of generators and relations. Interscience Publishers, New York-London-Sydney (1966) xii + 444 pp

  35. Mal’cev, A.I.: On isomorphic matrix representations of infinite groups of matrices (Russian). Mat. Sb. 8, 405–422 (1940) & Amer. Math. Soc. Transl. (2) 45, 1–18 (1965)

  36. Markoff, A.A.: Foundations of the algebraic theory of braids. Trudy Mat. Inst. Steklova 16, 1–54 (1945)

    Google Scholar 

  37. Mostovoy, J.: A presentation for the planar pure braid group, (2020), arXiv:2006.08007

  38. Mostovoy, J., Roque-Márquez, C.: Planar pure braids on six strands. J. Knot Theory Ramif. 29(01), 1950097 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mubeena, T., Sankaran, P.: Twisted conjugacy classes in abelian extensions of certain linear groups. Canad. Math. Bull. 57(1), 132–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Naik, T.K., Nanda, N., Singh, M.: Conjugacy classes and automorphisms of twin groups. Forum Math. 32(5), 1095–1108 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Naik, T.K., Nanda, N., Singh, M.: Some remarks on twin groups. J. Knot Theory Ramif. 29(10), 2042006 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nanda, N., Singh, M.: Alexander and Markov theorems for virtual doodles. N. Y. J. Math. 27, 272–295 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Nasybullov, T.: Reidemeister spectrum of special and general linear groups over some fields contains 1. J. Algebra Appl. 18(8), 1950153 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nasybullov, T.: Twisted conjugacy classes in unitriangular groups. J. Group Theory 22(2), 253–266 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Toinet, E.: A finitely presented subgroup of the automorphism group of a right-angled Artin group. J. Group Theory 15(6), 811–822 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Servatius, H.: Automorphisms of graph groups. J. Algebra 126, 34–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shabat, G.B., Voevodsky, V.A.: Drawing curves over number fields, The Grothendieck Festschrift, Vol. III, pp. 199–227, Prog. Math., 88, Birkhäuser Boston, Boston, MA, (1990)

Download references

Acknowledgements

Tushar Kanta Naik acknowledges support from the NBHM via grant number 0204/3/2020/R &D-II/2475. Neha Nanda has received funding from European Union’s Horizon Europe research and innovation programme under the Marie Sklodowska Curie grant agreement no 101066588. Mahender Singh is supported by the Swarna Jayanti Fellowship grants DST/SJF/MSA-02/2018-19 and SB/SJF/2019-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Nanda.

Additional information

Communicated by John S. Wilson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, T.K., Nanda, N. & Singh, M. Structure and automorphisms of pure virtual twin groups. Monatsh Math 202, 555–582 (2023). https://doi.org/10.1007/s00605-023-01851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01851-0

Keywords

Mathematics Subject Classification

Navigation