Skip to main content
Log in

Functional MRI in the assessment of cortical activation during gait-related imaginary tasks

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Imaginary tasks can be used to investigate the neurophysiology of gait. In this study, we explored the cortical control of gait-related imagery in 21 healthy volunteers using functional magnetic resonance imaging. Imaginary tasks included gait initiation, stepping over an obstacle, and gait termination. Subjects watched a video clip that showed an actor in gait motion under an event-related design. We detected activation in the supplementary motor area during major gait-related imagery tasks, and especially during gait initiation. During gait termination and stepping over an obstacle, the amount of cortical resources allocated to the imaginary tasks included a large visuomotor network comprising the dorsal and ventral premotor areas. We conclude that our paradigm to study the cortical control of gait may help in elucidating the pathophysiology of higher-level gait disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4(7):267–278

    Article  PubMed  Google Scholar 

  • Armstrong DM (1988) The supraspinal control of mammalian locomotion. J Physiol 405:1–37

    PubMed  CAS  Google Scholar 

  • Bakker M, de Lange FP, Stevens JA, Toni I, Bloem BR (2007a) Motor imagery of gait: a quantitative approach. Exp Brain Res 179(3):497–504

    Article  PubMed  CAS  Google Scholar 

  • Bakker M, Verstappen CC, Bloem BR, Toni I (2007b) Recent advances in functional neuroimaging of gait. J Neural Transm 114(10):1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13(2):400–404

    PubMed  CAS  Google Scholar 

  • Coxon JP, Stinear CM, Byblow WD (2009) Stop and go: the neural basis of selective movement prevention. J Cogn Neurosci 21:1193–1203

    Article  PubMed  Google Scholar 

  • Cunnington R, Windischberger C, Deecke L, Moser E (2003) The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20(1):404–412

    Article  PubMed  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19(3):764–776

    Article  PubMed  Google Scholar 

  • Della Sala S, Francescani A, Spinnler H (2002) Gait apraxia after bilateral supplementary motor area lesion. J Neurol Neurosurg Psychiatry 72(1):77–85

    Article  PubMed  CAS  Google Scholar 

  • do Nascimento OF, Nielsen KD, Voigt M (2005) Influence of directional orientations during gait initiation and stepping on movement-related cortical potentials. Behav Brain Res 161(1):141–154

    Article  PubMed  Google Scholar 

  • Genovese C, Lazar N, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878

    Article  PubMed  Google Scholar 

  • Grezes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Article  PubMed  CAS  Google Scholar 

  • Hanakawa T, Katsumi Y, Fukuyama H, Honda M, Hayashi T, Kimura J, Shibasaki H (1999) Mechanisms underlying gait disturbance in Parkinson’s disease: a single photon emission computed tomography study. Brain 122(Pt 7):1271–1282

    Article  PubMed  Google Scholar 

  • Iseki K, Hanakawa T, Shinozaki J, Nankaku M, Fukuyama H (2008) Neural mechanisms involved in mental imagery and observation of gait. Neuroimage 41(3):1021–1031

    Article  PubMed  Google Scholar 

  • Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22(4):1722–1731

    Article  PubMed  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14(1 Pt 2):S103–S109

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (2006) Motor cognition: what actions tell to the self. Oxford University Press, Oxford

    Google Scholar 

  • Jian Y, Winter DA, Ishac MG, Gilchrist L (1993) Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1(1):9–22

    Article  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131

    Article  PubMed  CAS  Google Scholar 

  • Leung H-C, Cai W (2007) Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. J Neurosci 27(37):9893–9900

    Article  PubMed  CAS  Google Scholar 

  • MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the evidence. Phys Ther 82(1):69–83

    PubMed  Google Scholar 

  • Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J (2003) Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp 19(1):47–62

    Article  PubMed  Google Scholar 

  • McIntosh RD, McClements KI, Schindler I, Cassidy TP, Birchall D, Milner AD (2004) Avoidance of obstacles in the absence of visual awareness. Proc Biol Sci 271(1534):15–20

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Matsuyama K, Mori F, Nakajima K (2001) Supraspinal sites that induce locomotion in the vertebrate central nervous system. Adv Neurol 87:25–40

    PubMed  CAS  Google Scholar 

  • Munzert J, Lorey B, Zentgraf K (2009) Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev 60(2):306–326

    Article  PubMed  Google Scholar 

  • Nadeau SE (2007) Gait apraxia: further clues to localization. Eur Neurol 58(3):142–145

    Article  PubMed  Google Scholar 

  • Nutt JG, Marsden CD, Thompson PD (1993) Human walking and higher-level gait disorders, particularly in the elderly. Neurology 43(2):268–279

    PubMed  CAS  Google Scholar 

  • Patla AE (2004) Adaptive human locomotion: influence of neural, biological, and mechanical factors on control mechanisms. In: Bronstein AM, Brandt T, Woollacott MH, Nutt JG (eds) Clinical disorders of balance, posture and gait, 2nd edn. Arnold, London, pp 20–38

    Google Scholar 

  • Penny WD, Holmes AJ (2007) Random effects analysis. In: Friston K, Ashburner J, Kiebel S, Nichols T, Penny W (eds) Statistical parametric mapping: the analysis of functional brain images. Academic Press, London, pp 156–165

    Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11(6):663–672

    Article  PubMed  CAS  Google Scholar 

  • Reynolds RF, Day BL (2005) Visual guidance of the human foot during a step. J Physiol 569(Pt 2):677–684

    Article  PubMed  CAS  Google Scholar 

  • Rice NJ, McIntosh RD, Schindler I, Mon-Williams M, Demonet JF, Milner AD (2006) Intact automatic avoidance of obstacles in patients with visual form agnosia. Exp Brain Res 174(1):176–188

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154

    Article  PubMed  Google Scholar 

  • Santi A, Servos P, Vatikiotis-Bateson E, Kuratate T, Munhall K (2003) Perceiving biological motion: dissociating visible speech from walking. J Cogn Neurosci 15(6):800–809

    Article  PubMed  Google Scholar 

  • Schindler I, Rice NJ, McIntosh RD, Rossetti Y, Vighetto A, Milner AD (2004) Automatic avoidance of obstacles is a dorsal stream function: evidence from optic ataxia. Nat Neurosci 7(7):779–784

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Duhamel JR (2001) Motor and visual imagery as two complementary but neurally dissociable mental processes. J Cogn Neurosci 13(7):910–919

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Kubota K (2008) Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39(2):600–607

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to medical cerebral imaging. Thieme Medical, Stuttgart, 122 p

  • Thompson PD (2007) Higher level gait disorders. Curr Neurol Neurosci Rep 7(4):290–294

    Article  PubMed  Google Scholar 

  • Thompson PD, Nutt JG (2007) Higher level gait disorders. J Neural Transm 114(10):1305–1307

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wai Y, Kuo B, Yeh YY, Wang J (2008a) Cortical control of gait in healthy humans: an fMRI study. J Neural Transm 115(8):1149–1158

    Article  PubMed  Google Scholar 

  • Wang C, Wai Y, Weng Y, Yu J, Wang J (2008b) The cortical modulation from the external cues during gait observation and imagination. Neurosci Lett 443(3):232–235

    Article  PubMed  CAS  Google Scholar 

  • Winter D (1995) Human balance and posture control during standing and walking. Gait & Posture 3(4):193–214

    Article  Google Scholar 

  • Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4(1):58–73

    Article  Google Scholar 

  • Xue G, Aron AR, Poldrack RA (2008) Common neural substrates for inhibition of spoken and manual responses. Cereb Cortex 18(8):1923–1932

    Article  PubMed  Google Scholar 

  • Yazawa S, Shibasaki H, Ikeda A, Terada K, Nagamine T, Honda M (1997) Cortical mechanism underlying externally cued gait initiation studied by contingent negative variation. Electroencephalogr Clin Neurophysiol 105(5):390–399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported jointly by the National Science Council Taiwan (Grant NSC96-2321-B-182-002-MY2) and the ChangGung Memorial Hospital (Grant CMRPG360822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChiHong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wai, Y., Weng, Y. et al. Functional MRI in the assessment of cortical activation during gait-related imaginary tasks. J Neural Transm 116, 1087–1092 (2009). https://doi.org/10.1007/s00702-009-0269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0269-y

Keywords

Navigation