Skip to main content
Log in

Validation of the “Lokal-Modell” over heterogeneous land surfaces using aircraft-based measurements of the REEEFA experiment and comparison with micro-scale simulations

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D (1997) Mk.2 HERCULES. Summary of capability. Meteorological Research Flight Technical Note No. 21, Meteorological Research Flight (MRF), Farnborough, UK

  • J-C André J-P Goutorbe A Perrier (1986) ArticleTitleHAPEX-MOBILHY: A hydrologic atmospheric experiment for the study of water budget and evaporation flux at the climatic scale. Bull Amer Meteorol Soc 67 138–144

    Google Scholar 

  • J Bange F Beyrich DAM Engelbart (2002) ArticleTitleAirborne measurements of turbulent fluxes during LITFASS-98: Comparison with ground measurements and remote sensing in a case study. Theor Appl Climatol 73 35–51 Occurrence Handle10.1007/s00704-002-0692-6

    Article  Google Scholar 

  • AK Betts (1992) ArticleTitleFIFE Atmospheric boundary layer budget methods. J Geophys Res 97 IssueIDD17 18523–18531

    Google Scholar 

  • AK Betts RL Desjardins JI MacPherson RD Kelly (1990) ArticleTitleBoundary-layer heat and moisture budgets from FIFE. Bound Layer Meteorol 50 109–137 Occurrence Handle10.1007/BF00120520

    Article  Google Scholar 

  • AK Betts RL Desjardins JI MacPherson (1992) ArticleTitleBudget analysis of the boundary layer grid flights during FIFE 1987. J Geophys Res 97 IssueIDD17 18533–18546

    Google Scholar 

  • F Beyrich H-J Herzog J Neisser (2002) ArticleTitleThe LITFASS project of DWD and the LITFASS-98 experiment: The project strategy and the experimental setup. Theor Appl Climatol 73 3–18

    Google Scholar 

  • P Braun B Maurer G Müller P Gross G Heinemann C Simmer (2001) ArticleTitleAn integrated approach for the determination of regional evapotranspiration using mesoscale modelling, remote sensing and boundary layer measurements. Meteorol Atmos Phys 76 83–105 Occurrence Handle10.1007/s007030170041

    Article  Google Scholar 

  • Clark TL (1991) Lateral and upper boundary conditions. ECMWF Seminar Proc., Numerical Methods in Atmospheric Models, vol. II, Reading, pp 43–71

  • HC Davies (1976) ArticleTitleA lateral boundary formulation for multilevel prediction models. Quart J R Met Soc 102 405–418 Occurrence Handle10.1256/smsqj.43209

    Article  Google Scholar 

  • Doms G, Schättler U (1999) The nonhydrostatic limited-area model LM (Lokal-Modell) of DWD. Deutscher Wetterdienst, 63004 Offenbach am Main, Germany, 180 pp (available at: www.cosmo-model.org)

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, 316 pp

  • J Grunwald N Kalthoff U Corsmeier F Fiedler (1996) ArticleTitleComparison of areally averaged turbulent fluxes over non-homogeneous terrain: Results from the EFEDA-Field experiment. Bound Layer Meteorol 77 105–134 Occurrence Handle10.1007/BF00119574

    Article  Google Scholar 

  • Heinemann G, Kerschgens M (2005) Comparison of methods for area-averaging surface energy fluxes over heterogeneous land surfaces using high-resolution non-hydrostatic simulations. Int J Climatol 25; (DOI: 10.1002/joc1123)

  • A Hense M Kerschgens E Raschke (1982) ArticleTitleAn economical method for computing the radiative energy transfer in circulation models. Quart J R Met Soc 108 231–252 Occurrence Handle10.1256/smsqj.45513

    Article  Google Scholar 

  • I Jacobsen E Heise (1982) ArticleTitleA new economic method for the computation of the surface temperature in numerical models. Beitr Phys Atmos 55 128–141

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary-layer flows. New York: Oxford University Press, 289 pp

  • RD Kelly EA Smith JI MacPherson (1992) ArticleTitleA comparison of surface sensible and latent heat fluxes from aircraft and surface measurements in FIFE 1987. J Geophys Res 97 IssueIDD17 18445–18453

    Google Scholar 

  • DH Lenschow J Mann L Kristensen (1994) ArticleTitleHow long is long enough when measuring fluxes and other turbulence statistics. J Atmos Ocean Technol 11 661–673 Occurrence Handle10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2

    Article  Google Scholar 

  • J-F Louis (1979) ArticleTitleA parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17 187–202 Occurrence Handle10.1007/BF00117978

    Article  Google Scholar 

  • LVA (1998) Digital elevation model DGM 50. Landesvermessungsamt NRW, Muffendorfer Str. 19–21, 53177 Bonn, Germany. (Web home page http://www.lverma.nrw.de, data web site/produkte/landschaftsinformation/hoehenmodelle/gelaendemodelle/dgm50/DGM50.htm)

  • BH Lynn F Abramopoulos R Avissar (1995) ArticleTitleUsing similarity theory to parameterize mesoscale heat fluxes generated by subgrid-scale landscape discontinuities in GCMs. J Clim 8 932–951

    Google Scholar 

  • L Mahrt (1998) ArticleTitleFlux sampling errors for aircraft and towers. J Atmos Ocean Technol 15 416–429 Occurrence Handle10.1175/1520-0426(1998)015<0416:FSEFAA>2.0.CO;2

    Article  Google Scholar 

  • L Mahrt (2000) ArticleTitleSurface heterogeneity and vertical structure of the boundary layer. Bound Layer Meteorol 96 33–62 Occurrence Handle10.1023/A:1002482332477

    Article  Google Scholar 

  • Maurer B (2003) Messungen in der atmosphärischen Grenzschicht und Validation eines mesoskaligen Atmosphärenmodells über heterogenen Landoberflächen. Vol. 59. Bonner Meteorologische Abhandlungen, St. Augustin: Asgard-Verlag, 182 pp

  • GL Mellor T Yamada (1982) ArticleTitleDevelopment of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20 851–875

    Google Scholar 

  • N Mölders A Raabe (1996) ArticleTitleNumerical investigations on the influence of subgrid-scale surface heterogeneity on evapotranspiration and cloud processes. J Appl Meteor 35 782–795

    Google Scholar 

  • Oke TR (1987) Boundary-layer climates. London New York: Routledge, 435 pp

  • B Ritter J-F Geleyn (1992) ArticleTitleA comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Wea Rev 120 303–325

    Google Scholar 

  • SBA (1997) Daten zur Bodenbedeckung für die Bundesrepublik Deutschland. Federal Statistical Office, Wiesbaden, Germany (CD-ROM)

  • Y Shao M Sogalla MJ Kerschgens W Brücher (2001) ArticleTitleTreatment of land surface heterogeneity in a meso-scale atmospheric model. Meteorol Atmos Phys 78 157–181 Occurrence Handle10.1007/s703-001-8171-3

    Article  Google Scholar 

  • Sogalla M, Kerschgens MJ (2001) Berechnung lokaler Niederschlagsfelder zur Parameterisierung der nassen Deposition auf der Basis größerskaliger Vorhersagemodelle. Mitteilungen aus dem Institut für Geophysik und Meteorologie der Universität zu Köln 144, 81 pp

  • J Steppeler G Doms U Schättler HW Bitzer A Gassmann U Damrath G Gregoric (2003) ArticleTitleMeso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82 75–96

    Google Scholar 

  • Stull RB (1988) An introduction to boundary-layer meteorology. Dordrecht: Kluwer Academic Publishers, 666 pp

  • M Tiedtke (1989) ArticleTitleA comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117 1779–1800 Occurrence Handle10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

    Article  Google Scholar 

  • USGS (1997) Land processes distributed active archive center (LP DAAC), U.S. Geological survey’s EROS data center [available online at: edcdaac.usgs.gov]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, B., Heinemann, G. Validation of the “Lokal-Modell” over heterogeneous land surfaces using aircraft-based measurements of the REEEFA experiment and comparison with micro-scale simulations. Meteorol. Atmos. Phys. 91, 107–128 (2006). https://doi.org/10.1007/s00703-004-0105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-004-0105-8

Keywords

Navigation