Skip to main content

Advertisement

Log in

The coupling of cloud base height and surface fluxes: a transferability intercomparison

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper presents an evaluation of the simulated coupling between cloud base height (CBH) and surface fluxes over selected Coordinated Enhanced Observing Period (CEOP) reference stations by five regional climate models as part of a transferability intercomparison experiment. The model results are compared with station data obtained during the first phase of the CEOP measuring campaigns. The models gave a credible simulation of both diurnal and seasonal cycles of cloud base height and surface variables over the stations. However, the models exhibited some difficulty in reproducing the diurnal and seasonal temperatures over the tropical stations. The study used principal component analysis to show that three factors account for most of the variability in the observed and simulated data and to investigate the coupling between cloud base height and surface fluxes in the data. In the observations, CBH is well coupled with the surface fluxes over Cabauw, Bondville, Lamont, and Berms, but coupled only with temperature over Lindenberg and Tongyu. All models but GEMLAM simulate substantial coupling between CBH and surface fluxes at all stations; GEMLAM does not couple CBH with surface fluxes, but with surface temperature and specific humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bélair S, Crevier L, Mailhot J, Bilodeau B, Delage Y (2003) Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: warm season results. J hydrometeorol 4(2):352–370

    Article  Google Scholar 

  • Beljaars A, Bosveld F (1997) Cabauw data for the validation of land surface pa-rameterization schemes. J Climate 10(6):1172–1193

    Google Scholar 

  • Betts AK (2004) Understanding hydrometeorology using global models. Bull Am Meteorol Soc 85(11):1673–1688

    Article  Google Scholar 

  • Beyrich F, Adam W (2004) A note on the use of CEOP reference site data for comparison with the output of global models: The Lindenberg example. CEOP News-letter 6:6–7

    Google Scholar 

  • Cattell R (1966) The scree test for the number of factors. Multivar Behav Res 1(2):245–276

    Google Scholar 

  • Chou M (1992) A solar radiation model for use in climate studies. J Atmos Sci 49(9):762–772

    Article  Google Scholar 

  • Chou M, Suarez M (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Memo 104606(3):85

    Google Scholar 

  • Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC–MRB global environmental multiscale (GEM) model. Part I: design considerations and formulation. Mon Weather Rev 126(6):1397–1418

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger J (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126(562):1–30

    Article  Google Scholar 

  • Davies HC (1976) Lateral boundary formulation for multilevel prediction models. Q J R Meteorol Soc 102(432):405–418

    Google Scholar 

  • Gates WL et al (1996) Climate models—evaluation. In: Houghton JT et al (eds) Climate 1995: The science of climate change. Cambridge University Press, Cambridge, pp 229–284

    Google Scholar 

  • Gates WL et al (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull Am Meteorol Soc 80:29–55

    Article  Google Scholar 

  • Gbobaniyi EO, Abiodun BJ, Tadross MA, Hewitson BC, Gutowski WJ (2011) The coupling of cloud base height with surface fluxes: a transferability study over Cabauw. Int J Climatol (in review)

  • Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121(3):764–787

    Article  Google Scholar 

  • Hair JF, Anderson RE et al (1992) Multivariate data analysis. Macmillan Publishing, New York

    Google Scholar 

  • Hong S, Pan H (1996) Nonlocal boundary layer vertical diffusion in a medium range forecast model. Mon Weather Rev 124(10):2322–2339

    Article  Google Scholar 

  • Jiao Y, Caya D (2006) An investigation of summer precipitation simulated by the Canadian regional climate model. Mon Weather Rev 134(3):919–932

    Article  Google Scholar 

  • Jollife IT (1990) Principal component analysis: a beginner’s guide. Part I: introduction and application. Weather 45:375–382

    Google Scholar 

  • Jones C, Sanchez E (2002) The representation of shallow cumulus convection and associated cloud fields in the Rossby Centre Atmospheric Model. Hirlam Newsl 41:91–106

    Google Scholar 

  • Juang HMH, Kanamitsu M (1994) The NMC nested regional spectral model. Mon Weather Rev 122(1):3–26

    Article  Google Scholar 

  • Juang HMH, Hong SY, Kanamitsu M (1997) The NCEP regional spectral model: an update. Bull Am Meteorol Soc 78(10):2125–2143

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining detraining plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802

    Article  Google Scholar 

  • Kain J, Fritsch J (1993) The representation of cumulus convection in numerical models. Meteor Mongr 46:165–177

    Google Scholar 

  • Kaiser H (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200

    Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation. Meteor Monogr Amer Meteor Soc (32), p 84

  • Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports Meteorology and Climatology, SMHI, SE-60176 Norrköping, Sweden (108), p 54

  • Kong F, Yau M (1997) An explicit approach to microphysics in MC2. Atmos Ocean 35:257–291

    Article  Google Scholar 

  • Koster R, Dirmeyer P, Guo Z, Bonan G, Chan E, Cox P et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140

    Article  Google Scholar 

  • Laprise R, Caya D, Bergeron G, Giguère M (1997) The formulation of the André Robert MC2 (mesoscale compressible community) model. Numerical Methods in Atmospheric and Oceanic Modelling, The André J. Robert Memorial Volume, pp 195–220

  • Li J, Barker H (2005) A radiation algorithm with correlated-k distribution. Part I: local thermal equilibrium. J Atmos Sci 62(2):286–309

    Article  Google Scholar 

  • Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Climate Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Lorant V, McFarlane N, Laprise R (2002) A numerical study using the Canadian Regional Climate Model for the PIDCAP period. Boreal Environ Res 7(3):203–210

    Google Scholar 

  • Mailhot J et al (2006) The 15-km version of the Canadian regional forecast system. Atmos Ocean 44:133–149

    Article  Google Scholar 

  • Manzato A, Morgan G Jr (2006) Evaluating the sounding instability with the lifted parcel theory forced. Atmos Res 67–68(2003):455–473

    Google Scholar 

  • Mitchell K, Lohmann D, Houser P, Wood E, Schaake J, Robock A et al (2004) The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109:D07S90

    Article  Google Scholar 

  • Morcrette J (1984) Sur la paramétrisation du rayonnement dans les modèles decirculation générale atmosphérique. PhD thesis, Université des Sciences et Techniques de Lille, Villeneuve d’Asq Cedex, France

  • Muller (1981) 1981: Internal waves and small scale processes. Scientific Surveys in Honor of H. Stommel, B. A. Warren and C. Wunsch (eds). The MIT Press, Cambridge, pp 264–291

  • Pan HL (1990) A simple parametrization scheme of evapotranspiration over land for the NMC medium-range forecast model. Mon Weather Rev 118:2500–1512

    Article  Google Scholar 

  • Pan HL, Wu WS (1995) Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409:40. Available from NOAA/NWS/NCEP, Environmental Modeling Center, WWB, Room 207, Washington, DC 20233

  • Puckrin E, Evans W, Li J, Lavoie H (2004) Comparison of clear-sky surface radiative fluxes simulated with radiative transfer models. Can J Remote Sens 30(6):903

    Article  Google Scholar 

  • Rasch P, Kristjánsson J (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Climate 11:1587–1614

    Article  Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

    Article  Google Scholar 

  • Ritter B, Geleyn J (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325

    Article  Google Scholar 

  • Rogers C (1977) Radiative processes in the atmosphere. ECMWF Seminars, Reading, pp 5–66

  • Samuelsson P, Gollvik S, Ullerstig A (2006) The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Reports in Meteorology 122(76)

  • Savijärvi H (1990) Fast radiation parameterization schemes for mesoscale and short-range forecast models. J Appl Meteorol 29(6):437–447

    Article  Google Scholar 

  • Schrodin R, Heise E (2001) The multi-layer-version of the DWD soil model TERRA/LM. Consortium for Small-Scale Modelling (COSMO). Tech Rep 2:16

    Google Scholar 

  • Stephens G (1984) The parameterization of radiation for numerical weather prediction and climate models. Mon Wea Rev 112:826–867

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer H, Gassmann A, Damrath U et al (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1):75–96

    Article  Google Scholar 

  • Sundqvist H, Berge E, Kristjánsson J (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117(8):1641–1657

    Article  Google Scholar 

  • Takle ES, Roads J et al (2007) Transferability intercomparison—an opportunity for new insight on the global water cycle and energy budget. Bull Am Meteorol Soc 88(3):375–384

    Article  Google Scholar 

  • Taylor K (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Verseghy D (1991) CLASS-A Canadian land surface scheme for GCMs. I. Soil model. Int J Climatol 11(2):111–133

    Article  Google Scholar 

  • Verseghy D, McFarlane N, Lazare M (1993) CLASS-A Canadian land surface scheme for GCMS. II. Vegetation model and coupled runs. Int J Climatol 13(4):347–370

    Article  Google Scholar 

  • Yakimiw E, Robert A (1990) Validation experiments for a nested grid-point regional forecast model. Atmos Ocean 28:466–472

    Article  Google Scholar 

Download references

Acknowledgments

The project was sponsored by the South African National Research Foundation, Deustscher Akademischer Austausch Dienst (DAAD) and U.S. Department of Energy grant DEFG0201ER63250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiola O. Gbobaniyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gbobaniyi, E.O., Abiodun, B.J., Tadross, M.A. et al. The coupling of cloud base height and surface fluxes: a transferability intercomparison. Theor Appl Climatol 106, 189–210 (2011). https://doi.org/10.1007/s00704-011-0421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0421-0

Keywords

Navigation