Skip to main content
Log in

Encephalomyocarditis virus may use different pathways to initiate infection of primary human cardiomyocytes

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Encephalomyocarditis virus (EMCV) can infect a wide range of vertebrate species including swine and non-human primates, but few data are available for humans. We therefore wanted to gain further insight into the mechanisms involved in EMCV infection of human cells. For this purpose, we analyzed the permissiveness of primary human cardiomyocytes towards two strains of EMCV; a pig myocardial strain (B279/95) and a rat strain (1086C). In this study, we show that both strains productively infect primary human cardiomyocytes and induce complete cytolysis. Binding and infection inhibition experiments indicated that attachment and infection are independent of sialic acid and heparan sulfate for B279/95 and dependent for 1086C. Sequence comparison between the two strains and three-dimensional analysis of the capsid revealed that six of the seven variable residues are surface-exposed, suggesting a role for these amino acids in binding. Moreover, analysis of variants isolated from the 1086C strain revealed the importance of lysine 231 of VP1 in the attachment of EMCV to cell-surface sialic acid residues. Together, these results show a potential for EMCV strains to use at least two different binding possibilities to initiate infection and provide new insights into the mechanisms involved in primary human cell recognition by EMCV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acland HM, Littlejohns IR, Walker RI (1970) Suspected encephalomyocarditis virus infection in pigs. Aust Vet J 46:348

    Article  PubMed  CAS  Google Scholar 

  2. Adachi M, Amsterdam D, Brooks SE, Volk BW (1975) Ultrastructural alterations of tissue cultures from human fetal brain infected with the E variant of EMC virus. Acta Neuropathol 32:133–142

    Article  PubMed  CAS  Google Scholar 

  3. Anderson K, Bond CW (1987) Biological properties of mengovirus: characterization of avirulent, hemagglutination-defective mutants. Arch Virol 93:31–49

    Article  PubMed  CAS  Google Scholar 

  4. Brewer LA, Lwamba HC, Murtaugh MP, Palmenberg AC, Brown C, Njenga MK (2001) Porcine encephalomyocarditis virus persists in pig myocardium and infects human myocardial cells. J Virol 75:11621–11629

    Article  PubMed  CAS  Google Scholar 

  5. Burness AT, Pardoe IU (1983) A sialoglycopeptide from human erythrocytes with receptor-like properties for encephalomyocarditis and influenza viruses. J Gen Virol 64:1137–1148

    Article  PubMed  CAS  Google Scholar 

  6. Cerutis DR, Bruner RH, Thomas DC, Giron DJ (1989) Tropism and histopathology of the D, B, K, and MM variants of encephalomyocarditis virus. J Med Virol 29:63–69

    Article  PubMed  CAS  Google Scholar 

  7. Craighead JE, Peralta PH, Shelokov A (1963) Demonstration of encephalomyocarditis virus antibody in human serums from Panama. Proc Soc Exp Biol Med 114:500–503

    PubMed  CAS  Google Scholar 

  8. Denis P, Koenen F (2003) Molecular analysis of the capsid coding region of a virulent encephalomyocarditis virus isolate after serial cell passages and assessment of its virulence. Arch Virol 148:903–912

    Article  PubMed  CAS  Google Scholar 

  9. Dick GWA (1949) The relationship of Mengo encephalomyelitis, encephalomyocarditis, Columbia-SK and M.M. viruses. J Immunol 62:375–386

    PubMed  CAS  Google Scholar 

  10. Gajdusek DC (1955) Encephalomyocarditis virus infection in childhood. Pediatrics 16:902–906

    PubMed  CAS  Google Scholar 

  11. Grobler DG, Raath JP, Braack LE, Keet DF, Gerdes GH, Barnard BJ, Kriek NP, Jardine J, Swanepoel R (1995) An outbreak of encephalomyocarditis-virus infection in free-ranging African elephants in the Kruger National Park. Onderstepoort J Vet Res 62:97–108

    PubMed  CAS  Google Scholar 

  12. Hammoumi S, Cruciere C, Guy M, Boutrouille A, Messiaen S, Lecollinet S, Bakkali-Kassimi L (2006) Characterization of a recombinant encephalomyocarditis virus expressing the enhanced green fluorescent protein. Arch Virol 151:1783–1796

    Article  PubMed  CAS  Google Scholar 

  13. Hubbard GB, Soike KF, Butler TM, Carey KD, Davis H, Butcher WI, Gauntt CJ (1992) An encephalomyocarditis virus epizootic in a baboon colony. Lab Animal Sci 42:233–239

    CAS  Google Scholar 

  14. Jin YM, Pardoe IU, Burness AT, Michalak TI (1994) Identification and characterization of the cell surface 70-kilodalton sialoglycoprotein(s) as a candidate receptor for encephalomyocarditis virus on human nucleated cells. J Virol 68:7308–7319

    PubMed  CAS  Google Scholar 

  15. Jnaoui K, Michiels T (1998) Adaptation of Theiler’s virus to L929 cells: mutations in the putative receptor binding site on the capsid map to neutralization sites and modulate viral persistence. Virology 244:397–404

    Article  PubMed  CAS  Google Scholar 

  16. Jones P, Mahamba C, Rest J, Andre C (2005) Fatal inflammatory heart disease in a bonobo (Pan paniscus). J Med Primatol 34:45–49

    Article  PubMed  Google Scholar 

  17. Kirkland PD, Gleeson AB, Hawkes RA, Naim HM, Boughton CR (1989) Human infection with encephalomyocarditis virus in New South Wales. Med J Aust 151:176–178

    PubMed  CAS  Google Scholar 

  18. Kobasa D, Mulvey M, Lee JS, Scraba DG (1995) Characterization of Mengo virus neutralization epitopes. II. Infection of mice with an attenuated virus. Virology 214:118–127

    Article  PubMed  CAS  Google Scholar 

  19. Koenen F, Vanderhallen H (1997) Comparative study of the pathogenic properties of a Belgian and a Greek encephalomyocarditis virus (EMCV) isolate for sows in gestation. Zentralbl Veterinarmed B 44:281–286

    PubMed  CAS  Google Scholar 

  20. Koenen F, Vanderhallen H, Castryck F, Miry C (1999) Epidemiologic, pathogenic and molecular analysis of recent encephalomyocarditis outbreaks in Belgium. Zentralbl Veterinarmed B 46:217–231

    PubMed  CAS  Google Scholar 

  21. Littlejohns IR, Acland HM (1975) Encephalomyocarditis virus infection of pigs. 2. Experimental disease. Aust Vet J 51:416–422

    Article  PubMed  CAS  Google Scholar 

  22. Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, Palmenberg AC (1987) The atomic structure of Mengo virus at 3.0 A resolution. Science 235:182–191

    Article  PubMed  CAS  Google Scholar 

  23. Mann LM, Anderson K, Luo M, Bond CW (1992) Molecular and structural basis of hemagglutination in mengovirus. Virology 190:337–345

    Article  PubMed  CAS  Google Scholar 

  24. Maurice H, Nielen M, Stegeman JA, Vanderhallen H, Koenen F (2002) Transmission of encephalomyocarditis virus (EMCV) among pigs experimentally quantified. Vet Microbiol 88:301–314

    Article  PubMed  CAS  Google Scholar 

  25. Nelsen-Salz B, Zimmermann A, Wickert S, Arnold G, Botta A, Eggers HJ, Kruppenbacher JP (1996) Analysis of sequence and pathogenic properties of two variants of encephalomyocarditis virus differing in a single amino acid in VP1. Virus Res 41:109–122

    Article  PubMed  CAS  Google Scholar 

  26. Reddacliff LA, Kirkland PD, Hartley WJ, Reece RL (1997) Encephalomyocarditis virus infections in an Australian zoo. J Zoo Wildl Med 28:153–157

    PubMed  CAS  Google Scholar 

  27. Reddi HV, Lipton HL (2002) Heparan sulfate mediates infection of high-neurovirulence Theiler’s viruses. J Virol 76:8400–8407

    Article  PubMed  CAS  Google Scholar 

  28. Seaman JT, Boulton JG, Carrigan MJ (1986) Encephalomyocarditis virus disease of pigs associated with a plague of rodents. Aust Vet J 63:292–294

    Article  PubMed  CAS  Google Scholar 

  29. Tavakkol A, Burness AT (1990) Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes. Biochemistry 29:10684–10690

    Article  PubMed  CAS  Google Scholar 

  30. Tesh RB (1978) The prevalence of encephalomyocarditis virus neutralizing antibodies among various human populations. Am J Trop Med Hyg 27:144–149

    PubMed  CAS  Google Scholar 

  31. Wellman KF, Amsterdam D, Wolk WB (1975) EMC virus and cultured human fetal pancreatic cells. Arch Pathol 99:424–429

    Google Scholar 

  32. Zhou L, Lin X, Green TJ, Lipton HL, Luo M (1997) Role of sialyloligosaccharide binding in Theiler’s virus persistence. J Virol 71:9701–9712

    PubMed  CAS  Google Scholar 

  33. Zimmerman J, Schwartz K, Hill HT, Meetz MC, Simonson R, Carlson JH (1993) Influence of dose and route on transmission of encephalomyocarditis virus to swine. J Vet Diagn Invest 5:317–321

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Peter Jones for valuable suggestions and Franck Koenen (Brussels, Belgium) for the supply of EMCV strains. This work was partly funded by Med-Vet-Net, Work package 31. Med-Vet-Net is an EU-funded Network of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saliha Hammoumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammoumi, S., Guy, M., Eloit, M. et al. Encephalomyocarditis virus may use different pathways to initiate infection of primary human cardiomyocytes. Arch Virol 157, 43–52 (2012). https://doi.org/10.1007/s00705-011-1133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1133-6

Keywords

Navigation