Skip to main content
Log in

Characterization of the morphology and genome of an Escherichia coli podovirus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Escherichia coli is an important opportunistic pathogen. It can cause sepsis and severe infection. The application of lytic bacteriophages to treat infectious diseases is an alternative to antibiotics. A lytic Escherichia coli phage, designated IME-EC2, was isolated from hospital sewage. Transmission electron microscopy revealed that IME-EC2 to be a member of the family Podoviridae. It had a 60-nm head and a 15-nm tail. Here, we present the complete genome sequence of this phage, which consists of 41,510 bp with an overall G+C content of 59.2 %. A total of 60 coding sequences (CDS) were identified, and the phage genome does not contain any tRNA genes. Forty percent of the unknown CDSs are unique to IME-EC2. This phage does not show significant similarity to other phages at the DNA level, which suggests that IME-EC2 could be a novel phage. One of the unique features identified in the IME-EC2 genome was a gene coding for a putative colanic-acid-degrading protein, which could allow the phage to degrade bacterial capsule and biofilms. Another unique feature is that IME-EC2 does not contain a terminase small subunit, which suggests that this phage may have a unique packaging mechanism. The present work provides novel information on phages and shows that this lytic phage or its products could be exploited to destroy bacterial biofilms and pathogenic E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Azaïez SRC, Fliss I, Simard RE, Moineau S (1998) Monoclonal antibodies raised against native major capsid proteins of lactococcal c2-like bacteriophages. Appl Environ Microbiol 64:4255–4259

    Google Scholar 

  2. Bachrach U, Friedmann A (1971) Practical procedures for the purification of bacterial viruses. Appl Microbiol 22:706–715

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    Article  CAS  PubMed  Google Scholar 

  4. Bateman A, Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299:1113–1119

    Article  CAS  PubMed  Google Scholar 

  5. Brüssow H (2005) Phage therapy: the Escherichia coli experience. Microbiology 151:2133–2140

    Article  PubMed  Google Scholar 

  6. Briers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K, Lavigne R (2007) Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages φKZ and EL. Mol Microbiol 65:1334–1344

    Article  CAS  PubMed  Google Scholar 

  7. Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol Microbiol 68:838–847

    Article  CAS  PubMed  Google Scholar 

  8. Calendar R, Abedon ST (2005) The bacteriophages. Oxford University Press, UK

  9. Catalano C (2000) The terminase enzyme from bacteriophage lambda: a DNA-packaging machine. Cell Mol Life Sci CMLS 57:128–148

    Article  CAS  Google Scholar 

  10. Chibeu A, Ceyssens PJ, Hertveldt K, Volckaert G, Cornelis P, Matthijs S, Lavigne R (2009) The adsorption of Pseudomonas aeruginosa bacteriophage phiKMV is dependent on expression regulation of type IV pili genes. FEMS Microbiol Lett 296:210–218

    Article  CAS  PubMed  Google Scholar 

  11. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Donate LE, Herranz L, Secilla JP, Carazo J, Fujisawa H, Carrascosa J (1988) Bacteriophage T3 connector: three-dimensional structure and comparison with other viral head-tail connecting regions. J Mol Biol 201:91–100

    Article  CAS  PubMed  Google Scholar 

  14. Eppler K, Wyckoff E, Goates J, Parr R, Casjens S (1991) Nucleotide sequence of the bacteriophage P22 genes required for DNA packaging. Virology 183:519–538

    Article  CAS  PubMed  Google Scholar 

  15. Foster SJ (1991) Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 137:1987–1998

    Article  CAS  PubMed  Google Scholar 

  16. Hambly E, Tétart F, Desplats C, Wilson WH, Krisch HM, Mann NH (2001) A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci 98:11411–11416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hughes K, Sutherland I, Clark J, Jones M (1998) Bacteriophage and associated polysaccharide depolymerases––novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590

    Article  CAS  PubMed  Google Scholar 

  18. King AM, Adams MJ, Lefkowitz EJ, Carstens EB (2012) Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. Elsevier

  19. Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann H-W, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP (2013) The host-range, genomics and proteomics of Escherichia coli O157: H7 bacteriophage rV5. Virology J 10:76

    Article  Google Scholar 

  20. Lhuillier S, Gallopin M, Gilquin B, Brasilès S, Lancelot N, Letellier G, Gilles M, Dethan G, Orlova EV, Couprie J (2009) Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc Natl Acad Sci 106:8507–8512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li X, Heyer W-D (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Liew KW, Alvarez AM (1981) Biological and morphological characterization of Xanthomonas campestris bacteriophages. Phytopathology 71:269–273

  23. Loessner MJ, Krause IB, Henle T, Scherer S (1994) Structural proteins and DNA characteristics of 14 Listeria typing bacteriophages. J Gen Virol 75:701

    Article  CAS  PubMed  Google Scholar 

  24. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:0955–0964

    Article  CAS  Google Scholar 

  25. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A (2008) The metagenomics RAST server––a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  26. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Otawa K, Lee SH, Yamazoe A, Onuki M, Satoh H, Mino T (2007) Abundance, diversity, and dynamics of viruses on microorganisms in activated sludge processes. Microb Ecol 53:143–152

    Article  PubMed  Google Scholar 

  28. Park M, Lee J-H, Shin H, Kim M, Choi J, Kang D-H, Heu S, Ryu S (2012) Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157: H7. Appl Environ Microbiol 78:58–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Petrovski S, Seviour RJ, Tillett D (2011) Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. Appl Environ Microbiol 77:1389–1398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Petrovski S, Seviour RJ, Tillett D (2013) Genome sequence and characterization of a Rhodococcus equi phage REQ1. Virus genes 46:588–590

  31. Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    Article  CAS  PubMed  Google Scholar 

  32. Saha S, Raghava GP (2007) BTXpred: prediction of bacterial toxins. In Silico Biol 7:405–412

    CAS  PubMed  Google Scholar 

  33. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, New York, pp 6.4–6.11

  34. Santos SB, Kropinski AM, Ceyssens P-J, Ackermann H-W, Villegas A, Lavigne R, Krylov VN, Carvalho CM, Ferreira EC, Azeredo J (2011) Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus. J Virol 85:11265–11273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539

    Article  CAS  PubMed  Google Scholar 

  36. Valpuesta J, Fujisawa H, Marco S, Carazo J, Carrascosa J (1992) Three-dimensional structure of T3 connector purified from overexpressing bacteria. J Mol Biol 224:103–112

    Article  CAS  PubMed  Google Scholar 

  37. Withey S, Cartmell E, Avery L, Stephenson T (2005) Bacteriophages—potential for application in wastewater treatment processes. Sci Total Environ 339:1–18

    Article  CAS  PubMed  Google Scholar 

  38. Zuber S, Boissin-Delaporte C, Michot L, Iversen C, Diep B, Brüssow H, Breeuwer P (2008) Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb Biotechnol 1:532–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Hi-Tech Research and Development (863) Program of China (No. 2012AA022003 and No. 2014AA021402), China Mega-Project on Major Drug Development (No. 2011ZX09401-023), China Mega-Project on Infectious Disease Prevention (No. 2013ZX10004-605, No. 2013ZX10004-607, No. 2013ZX10004-217, and No. 2011ZX10004-001) and State Key Laboratory of Pathogen and BioSecurity Program (No. SKLPBS1113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feixiong Zhang or Yigang Tong.

Additional information

Y. Hua and X. An have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Y., An, X., Pei, G. et al. Characterization of the morphology and genome of an Escherichia coli podovirus. Arch Virol 159, 3249–3256 (2014). https://doi.org/10.1007/s00705-014-2189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2189-x

Keywords

Navigation