Skip to main content
Log in

Characterisation of siRNAs derived from new isolates of bamboo mosaic virus and their associated satellites in infected ma bamboo (Dendrocalamus latiflorus)

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We characterised the virus-derived small interfering RNAs (vsiRNA) of bamboo mosaic virus (Ba-vsiRNAs) and its associated satellite RNA (satRNA)-derived siRNAs (satsiRNAs) in a bamboo plant (Dendrocalamus latiflorus) by deep sequencing. Ba-vsiRNAs and satsiRNAs of 21–22 nt in length, with both (+) and (-) polarity, predominated. The 5′-terminal base of Ba-vsiRNA was biased towards A, whereas a bias towards C/U was observed in sense satsiRNAs, and towards A in antisense satsiRNAs. A large set of bamboo genes were identified as potential targets of Ba-vsiRNAs and satsiRNAs, revealing RNA silencing-based virus-host interactions in plants. Moreover, we isolated and characterised new isolates of bamboo mosaic virus (BaMV; 6,350 nt) and BaMV-associated satRNA (satBaMV; 834 nt), designated BaMV-MAZSL1 and satBaMV-MAZSL1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  2. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  3. Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park H-S, Vazquez F, Robertson D, Meins F, Hohn T (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bouché N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  6. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nature Rev Genet 8:884–896

    Article  CAS  PubMed  Google Scholar 

  7. Csorba T, Pantaleo V, Burgyán J (2009) RNA silencing: an antiviral mechanism. Advances in virus research 75:35–230

    Article  CAS  PubMed  Google Scholar 

  8. Ding S-W, Voinnet O (2007) Antiviral Immunity Directed by Small RNAs. Cell 130:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214

    Article  CAS  PubMed  Google Scholar 

  10. Fang X, Qi Y (2016) RNAi in plants: an argonaute-centered view. Plant Cell 28(2):272–285 (TPC2015-00920-REV)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia-Ruiz H, Takeda A, Chapman E, Sullivan C, Fahlgren N, Brempelis K, Carrington J (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22:481–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gyorgy S, Simon M, Vitantonio P, Gabor T, Pilcher RL, Rusholme Vincent M, Jozsef B, Tamas D (2010) Structural and functional analysis of viral siRNAs. Plos Patho 6:1257–1262

    Google Scholar 

  13. Huang Y-L, Hsu Y-H, Han Y-T, Meng M (2005) mRNA guanylation catalyzed by the S-adenosylmethionine-dependent guanylyltransferase of bamboo mosaic virus. J Biol Chem 280:13153–13162

    Article  CAS  PubMed  Google Scholar 

  14. Lan P, Yeh WB, Tsai CW, Lin NS (2010) A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. Mol Plant-Microb Interact 23:903–914

    Article  CAS  Google Scholar 

  15. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Y-I, Chen Y-J, Hsu Y-H, Meng M (2001) Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. J Virol 75:782–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y-I, Shih T-W, Hsu Y-H, Han Y-T, Huang Y-L, Meng M (2001) The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5′ cap structure by exhibiting RNA 5′-triphosphatase activity. J Virol 75:12114–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Deng C, Shang Q, Zhao X, Liu X, Zhou Q (2016) Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants. Arch Virol 161:455–458

    Article  CAS  PubMed  Google Scholar 

  19. Lin K-Y, Cheng C-P, Chang BC-H, Wang W-C, Huang Y-W, Lee Y-S, Huang H-D, Hsu Y-H, Lin N-S (2010) Global analyses of small interfering RNAs derived from Bamboo mosaic virus and its associated satellite RNAs in different plants. PLoS One 5:e11928

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin NS, Hsu YH (1994) A Satellite RNA Associated with Bamboo Mosaic Potexvirus. Virology 202:707–714

    Article  CAS  PubMed  Google Scholar 

  21. Lin NS, Lin BY, Lo NW, Hu CC, Chow TY, Hsu YH (1994) Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. J Gen Virol 75(Pt 9):2513–2518

    Article  CAS  PubMed  Google Scholar 

  22. Lin NS, Lee YS, Lin BY, Lee CW, Hsu YH (1996) The open reading frame of bamboo mosaic potexvirus satellite RNA is not essential for its replication and can be replaced with a bacterial gene. Proceed Nat Acad Sci 93:3138–3142

    Article  CAS  Google Scholar 

  23. Lin W, Gao F, Yang W, Yu C, Zhang J, Chen L, Wu Z, Hsu Y-H, Xie L (2016) Molecular characterization and detection of a recombinant isolate of bamboo mosaic virus from China. Arch Virol 1–4

  24. Liou MR, Hu CC, Chou YL, Chang BY, Lin NS, Hsu YH (2015) Viral elements and host cellular proteins in intercellular movement of Bamboo mosaic virus. Curr Opin Virol 12:99–108

    Article  CAS  PubMed  Google Scholar 

  25. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  26. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Molnár A, Csorba T, Lakatos L, Várallyay É, Lacomme C, Burgyán J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  PubMed  PubMed Central  Google Scholar 

  28. Palani PV, Kasiviswanathan V, Chen JC-F, Chen W, Hsu Y-H, Lin N-S (2006) The arginine-rich motif of bamboo mosaic virus satellite RNA-encoded P20 mediates self-interaction, intracellular targeting, and cell-to-cell movement. Mol Plant-MicrobInteract 19:758–767

    Article  CAS  Google Scholar 

  29. Pantaleo V, Saldarelli P, Miozzi L, Giampetruzzi A, Gisel A, Moxon S, Dalmay T, Bisztray G, Burgyan J (2010) Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology 408:49–56

    Article  CAS  PubMed  Google Scholar 

  30. Poulsen C, Vaucheret H, Brodersen P (2013) Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell 25:22–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prabha K, Baranwal VK, Jain RK (2013) Applications of Next Generation High Throughput Sequencing Technologies in Characterization, Discovery and Molecular Interaction of Plant Viruses. Indian J Virol 24:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. Plos One 4:e4971

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Ann Rev Plant Biol 60:485–510

    Article  CAS  Google Scholar 

  34. Shimura H, Pantaleo V, Ishihara T, Myojo N, J-i Inaba, Sueda K, Burgyán J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smith NA, Eamens AL, Wang M-B (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends in plant science 11:460–468

    Article  CAS  PubMed  Google Scholar 

  37. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  CAS  PubMed  Google Scholar 

  38. Wang X-B, Wu Q, Ito T, Cillo F, Li W-X, Chen X, Yu J-L, Ding S-W (2010) RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proceed Nat Acad Sci 107:484–489

    Article  CAS  Google Scholar 

  39. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:e104

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang J, Zheng S-L, Zhang H-M, Liu X-Y, Li J, Li J-M, Chen J-P (2014) Analysis of small RNAs derived from Chinese wheat mosaic virus. Arch Virol 159:3077–3082

    Article  CAS  PubMed  Google Scholar 

  41. Zamore PD (2002) Ancient pathways programmed by small RNAs. Science 296:1265–1269

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Yang or Lianhui Xie.

Ethics declarations

Funding

This work was supported by grants from Natural Science Foundation of Fujian Province of China (Grant No. 2014J06011), Education Department of Fujian Province Office Program (Grant No. JA13092), FAFU Science Fund for Distinguished Young Scholars (Grant No. xjq201402) and the China Scholarship Council (CSC No. 201608350081).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2016_3092_MOESM1_ESM.pdf

Fig. S1. Maximum-likelihood (ML) tree constructed from the complete genomes of nine BaMV isolates (A) and 70 satBaMV isolates (B). ML topology was evaluated with 1,000 bootstrap replicates. For each node, the ML bootstrap percentages (BPs >70) are given on the branches. A foxtail mosaic virus isolate (NC_001483) served as an outgroup (PDF 928 kb)

Fig. S2. The origins of the 21–24 nt Ba-vsiRNAs (A) and satsiRNAs (B) along the genomic RNAs (PDF 947 kb)

705_2016_3092_MOESM3_ESM.pdf

Fig. S3 Analysis of the nucleotide percentages in the genomes of BaMV-MAZSL1 and satBaMV-MAZSL1, indicating strong preferences of 5′-terminal nucleotides of Ba-vsiRNAs and satsiRNAs (sense and antisense). (A) % of A. (B) % of C. (C) % of G. (D) % of U (PDF 443 kb)

705_2016_3092_MOESM4_ESM.docx

Table S1. Percentage identities of the genomic regions of BaMV-MAZSL1 and satBaMV-MAZSL1 (amino acids in parentheses) to other BaMV isolates (A) and selected satBaMV (B) isolates deposited in GenBank (DOCX 17 kb)

Table S2. The predicted target genes of vsiRNAs and satsRNAs (XLSX 849 kb)

Table S3. Hotspots of vsiRNAs and satsiRNAs (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Yan, W., Yang, W. et al. Characterisation of siRNAs derived from new isolates of bamboo mosaic virus and their associated satellites in infected ma bamboo (Dendrocalamus latiflorus). Arch Virol 162, 505–510 (2017). https://doi.org/10.1007/s00705-016-3092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3092-4

Keywords

Navigation