Skip to main content
Log in

Highly pathogenic avian influenza (H5N1) in Nigeria in 2015: evidence of widespread circulation of WA2 clade 2.3.2.1c

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Genetic analysis of the complete haemagglutinin (HA) gene of fourteen Nigerian avian influenza isolates showed multiple basic amino acids at the cleavage site (321PQRERRRKdelR*GLF333), characteristic of highly pathogenic avian influenza (HPAI). Substitution of Gln to Lys at position 322 (H5-specific numbering) was identified in one isolate. In some isolates, amino acid substitutions were observed across the HA gene, however the receptor binding, antigenic and glycosylation sites were conserved in all. Phylogenetic analysis revealed two clusters of the HPAI H5N1 clade 2.3.2.1c. Cluster I has close genetic relatedness (97.8–99.8%) with viruses circulating in some West Africa countries. Cluster II shared close identity (98.9–100.0%) with isolates from Europe, Côte d’Ivoire and Niger and viruses from this cluster were detected in five of the eleven states investigated in Nigeria. In view of the continuous HPAI outbreaks being recorded in Nigerian poultry and the zoonotic potential of the virus, extensive and continued characterization of HPAI isolates is advocated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Joannis T, Lombin LH, De Benedictis P et al (2006) Confirmation of H5N1 avian influenza in Africa. Vet Rec 158:309–310. doi:10.1136/vr.158.9.309-b

    Article  CAS  PubMed  Google Scholar 

  2. FAO (2015) H5N1 HPAI spread in Nigeria and increased risk for neighbouring countries in West Africa. Empres Watch, vol 32. http://www.fao.org/3/a-i4561e.pdf. Accessed 20 May 2016

  3. World Health Organization (2016) Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003–2015. http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_07_19_2016.pdf?ua=1. Accessed 29 July 2016

  4. Fusaro A, Joannis T, Monne I et al (2009) Introduction into Nigeria of a distinct genotype of avian influenza virus (H5N1). Emerg Infect Dis 15:445–447. doi:10.3201/eid1503.081161

    Article  PubMed  PubMed Central  Google Scholar 

  5. Monne I, Meseko C, Joannis T et al (2015) Highly pathogenic avian influenza A(H5N1) virus in poultry, Nigeria, 2015. Emerg Infect Dis 21:1275–1277. doi:10.3201/eid2107.150421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tassoni L, Fusaro A, Milani A et al (2016) Genetically different highly pathogenic avian influenza A(H5N1) viruses in West Africa, 2015. Emerg Infect Dis. doi:10.3201/eid2212.160578

    PubMed  PubMed Central  Google Scholar 

  7. OIE (2015) Avian influenza. Man. Diagnostic Tests Vaccines Terr. Anim. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.03.04_AI.pdf. Accessed 20 Jul 2015

  8. Fouchier RA, Bestebroer TM, Herfst S et al (2000) Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol 38:4096–4101

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Slomka MJ, Coward VJ, Banks J et al (2007) Identification of sensitive and specific avian influenza polymerase chain reaction methods through blind ring trials organized in the European Union. Avian Dis 51:227–234. doi:10.1637/7674-063006R1.1

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, Khan M, Măndoiu II (2013) Neuraminidase subtyping of avian influenza viruses with PrimerHunter-designed primers and quadruplicate primer pools. PLoS One 8:e81842. doi:10.1371/journal.pone.0081842

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoffmann E, Stech J, Guan Y et al (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289. doi:10.1007/s007050170002

    Article  CAS  PubMed  Google Scholar 

  12. Hall TA (1999) Symposium on RNA biology. III. RNA, tool and target. Research Triangle Park, North Carolina, USA. October 15–17, 1999. Proceedings Nucleic Acids Symp Ser 41:1–218 (citeulike-article-id: 691774)

  13. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Sun Y, Sun H et al (2012) A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity and neurovirulence of H5N1 influenza virus in mice. J Virol 86:6924–6931. doi:10.1128/JVI.07142-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang Y-H, Wu P-P, Sun Q et al (2008) Role of amino acid residues at positions 322 and 329 of hemagglutinin in virulence of H5N1 avian influenza virus. Bing Du Xue Bao 24:340–344

    CAS  PubMed  Google Scholar 

  16. Haque ME, Giasuddin M, Chowdhury EH, Islam MR (2014) Molecular evolution of H5N1 highly pathogenic avian influenza viruses in Bangladesh between 2007 and 2012. Avian Pathol 43:183–194. doi:10.1080/03079457.2014.898244

    Article  CAS  PubMed  Google Scholar 

  17. Marinova-Petkova A, Georgiev G, Seiler P et al (2012) Spread of influenza virus A (H5N1) clade 2.3.2.1 to Bulgaria in common buzzards. Emerg Infect Dis 18:1596–1602. doi:10.3201/eid1810.120357

    Article  PubMed  PubMed Central  Google Scholar 

  18. WHO/OIE/FAO H5N1 Evolution Working Group (2008) Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 14:e1. doi:10.3201/eid1407.071681

    Article  Google Scholar 

  19. WHO/OIE/FAO (2014) Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influ Other Respi Viruses 8:384–388. doi:10.1111/irv.12230

    Article  Google Scholar 

  20. Naguib MM, Kinne J, Chen H et al (2015) Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread. J Gen Virol 96:3212–3222. doi:10.1099/jgv.0.000274

    Article  CAS  PubMed  Google Scholar 

  21. Reid SM, Shell WM, Barboi G et al (2011) First reported incursion of highly pathogenic notifiable avian influenza A H5N1 viruses from clade 2.3.2 into European poultry. Transbound Emerg Dis 58:76–78. doi:10.1111/j.1865-1682.2010.01175.x

    Article  CAS  PubMed  Google Scholar 

  22. Islam MR, Haque ME, Giasuddin M et al (2012) New introduction of clade 2.3.2.1 avian influenza virus (H5N1) into Bangladesh. Transbound Emerg Dis 59:460–463. doi:10.1111/j.1865-1682.2011.01297.x

    Article  CAS  PubMed  Google Scholar 

  23. Fusaro A, Nelson MI, Joannis T et al (2010) Evolutionary dynamics of multiple sublineages of H5N1 influenza viruses in Nigeria from 2006 to 2008. J Virol 84:3239–3247. doi:10.1128/JVI.02385-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oladokun AT, Meseko CA, Ighodalo E et al (2012) Effect of intervention on the control of highly pathogenic avian influenza in Nigeria. Pan Afr Med J 13:14. doi:10.11604/pamj.2012.13.14.1106

    PubMed  PubMed Central  Google Scholar 

  25. Abdelwhab EM, Hassan MK, Abdel-Moneim AS et al (2016) Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on. Infect Genet Evol 40:80–90. doi:10.1016/j.meegid.2016.02.023

    Article  CAS  PubMed  Google Scholar 

  26. Bhat S, Bhatia S, Pillai AS et al (2015) Genetic and antigenic characterization of H5N1 viruses of clade 2.3.2.1 isolated in India. Microb Pathog 88:87–93. doi:10.1016/j.micpath.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  27. Hervé P-L, Lorin V, Jouvion G et al (2015) Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Virology 486:134–145. doi:10.1016/j.virol.2015.08.033

    Article  PubMed  Google Scholar 

  28. Igarashi M, Ito K, Kida H, Takada A (2008) Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin. Virology 376:323–329. doi:10.1016/j.virol.2008.03.036

    Article  CAS  PubMed  Google Scholar 

  29. Kaverin NV, Rudneva IA, Ilyushina NA et al (2002) Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83:2497–2505. doi:10.1099/0022-1317-83-10-2497

    Article  CAS  PubMed  Google Scholar 

  30. Burke DF, Smith DJ (2014) A recommended numbering scheme for influenza A HA subtypes. PLoS One 9:e112302. doi:10.1371/journal.pone.0112302

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2001) X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci 98:11181–11186. doi:10.1073/pnas.201401198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pabbaraju K, Tellier R, Wong S et al (2014) Full-genome analysis of avian influenza A(H5N1) virus from a human, North America, 2013. Emerg Infect Dis 20:887–891. doi:10.3201/eid2005.140164

    Article  PubMed  PubMed Central  Google Scholar 

  33. He S, Shi J, Qi X et al (2015) Lethal infection by a novel reassortant H5N1 avian influenza A virus in a zoo-housed tiger. Microbes Infect 17:54–61. doi:10.1016/j.micinf.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe Y, Ibrahim MS, Ellakany HF et al (2011) Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog 7:e1002068. doi:10.1371/journal.ppat.1002068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herfst S, Schrauwen EJA, Linster M et al (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541. doi:10.1126/science.1213362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imai M, Watanabe T, Hatta M et al (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. doi:10.1038/nature10831

    PubMed  PubMed Central  Google Scholar 

  37. El-Shesheny R, Kandeil A, Bagato O et al (2014) Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade. J Gen Virol 95:1444–1463. doi:10.1099/vir.0.063495-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Management of National Veterinary Research Institute, Vom during the course of this study. Special thanks to all the field epidemiologists and Avian Influenza Desk officers across the country for sample collection. We thank Davou C. Nyam, Ruth Akintola, Jesse Jonathan, Talatu Dashon Solomon and Daspan Amos for their excellent technical assistance. Special thanks to Dr. Ronke Odita for the map. We appreciate the support of the pathologists and other technical staff of Central Diagnostic Division. Sequences from GISAID’s Database were used in this study, we hereby acknowledge the authors, as well as the originating and submitting laboratories for these sequences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ismaila Shittu or Tony M. Joannis.

Ethics declarations

Funding

The study was partly supported by the management of the National Veterinary Research Institute, Vom, Nigeria.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2016_3149_MOESM1_ESM.tif

Supplementary Figure S1: Alignment of deduced amino acid sequences from the full HA genes of the 14 Nigerian HPAI isolates. Dots show amino acids matching the consensus sequence. A dash signifies a deletion of an amino acid sequence in the alignment. The cleavage site is represented in a black box and antigenic sites with broken red lines. Red boxes labelled 1, 2, 3 indicate the three antigenic sites. The three receptor binding sites are identified by A (130-loop), B (190-helix) and C (220-loop) (TIFF 1534 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shittu, I., Meseko, C.A., Gado, D.A. et al. Highly pathogenic avian influenza (H5N1) in Nigeria in 2015: evidence of widespread circulation of WA2 clade 2.3.2.1c. Arch Virol 162, 841–847 (2017). https://doi.org/10.1007/s00705-016-3149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3149-4

Keywords

Navigation