Skip to main content
Log in

Glucosides of morphine derivatives: synthesis and characterization

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Six 3-O- and 6-O-glucosides of morphine and codeine derivatives were synthesized by means of glucosylation with acetobromo-α-d-glucose. O-Glucosylation at C6 was carried out by the Koenigs-Knorr method, whereas the 3-O-glycoside of morphine was synthesized directly upon stirring morphine with acetobromo-α-d-glucose and aqueous sodium hydroxide in acetone. Complete 1H and 13C NMR assignments are presented for each synthesized compound based on one- and two-dimensional homo- and heteronuclear NMR techniques. Circular dichroism, ultraviolet absorbance, and high-resolution mass spectroscopy data ensure identification and structural characterization of the O-glucoside conjugates. The synthesized glucoside conjugates are potential analgesics; the presented spectral and chromatographic data are useful references for various analytical and metabolic studies including samples of biological origin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Trescot A, Glaser SE, Hansen H, Benyamin R, Patel S, Manchikanti L (2008) Pain Phys 11:S181

    Google Scholar 

  2. Vallejo R, Barkin RL, Wang VC (2011) Pain Phys 14:E343

    Google Scholar 

  3. Smith HS (2011) Clin J Pain 27:824

    Article  Google Scholar 

  4. Váradi A, Gergely A, Béni S, Jankovics P, Noszál B, Hosztafi S (2011) Eur J Pharm Sci 42:65

    Article  Google Scholar 

  5. Mori M, Oguri K, Yoshimura H, Shimomura K, Kamata O, Ueki S (1972) Life Sci 11:525

    Article  CAS  Google Scholar 

  6. Yoshimura H, Ida S, Oguri K, Tsukamoto H (1973) Biochem Pharmacol 22:1423

    Article  CAS  Google Scholar 

  7. Pasternak GW, Bodnar RJ, Clark JA, Inturrisi CE (1987) Life Sci 41:2845

    Article  CAS  Google Scholar 

  8. Paul D, Standifer KM, Inturrisi CE, Pasternak GW (1989) J Pharmacol Exp Ther 251:477

    CAS  Google Scholar 

  9. Chen XY, Zhao LM, Zhong DF (2003) Br J Clin Pharmacol 55:570

    Article  CAS  Google Scholar 

  10. Matern H, Matern S (1987) Biochim Biophys Acta. Lipids Lipid Metab 921:1

    Article  CAS  Google Scholar 

  11. Paibir SG, Soine WH, Thomas DF, Fisher RA (2004) Eur J Drug Metab Pharmacokinet 29:51

    Article  CAS  Google Scholar 

  12. Shipkova M, Armstrong VW, Wieland E, Niedmann PD, Schütz E, Brenner-Weiß G, Voihsel M, Braun F, Oellerich M (1999) Br J Pharmacol 126:1075

    Article  CAS  Google Scholar 

  13. Tang BK (1990) Pharmacol Ther 46:53

    Article  CAS  Google Scholar 

  14. Tang BK, Kalow W, Grey AA (1978) Res Commun Chem Pathol Pharmacol 21:45

    CAS  Google Scholar 

  15. Tang BK, Kalow W, Grey AA (1979) Drug Metab Dispos 7:315

    CAS  Google Scholar 

  16. Tjornelund J, Hansen SH, Cornett C (1989) Xenobiotica 19:891

    Article  CAS  Google Scholar 

  17. Biasutto L, Marotta E, Bradaschia A, Fallica M, Mattarei A, Garbisa S, Zoratti M, Paradisi C (2009) Bioorg Med Chem Lett 19:6721

    Article  CAS  Google Scholar 

  18. Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi NJ, Burman AC (2009) Anticancer Agent Med Chem 9:138

    Article  CAS  Google Scholar 

  19. Zhao X, Tao X, Wei D, Song Q (2006) Eur J Med Chem 41:1352

    Article  CAS  Google Scholar 

  20. Casparis P, Kuhni E, Leinzinger E (1949) Pharm Acta Helv 24:145

    CAS  Google Scholar 

  21. Kováč P, Rice KC (1995) Heterocycles 41:697

    Article  Google Scholar 

  22. Lacy C, Sainsbury M (1995) Tetrahedron Lett 36:3949

    Article  CAS  Google Scholar 

  23. Stachulski AV, Jenkins GV (1998) Nat Prod Rep 15:173

    Article  CAS  Google Scholar 

  24. Stachulski AV, Scheinmann F, Ferguson JR, Law JL, Lumbard KW, Hopkins P, Patel N, Clarke S, Gloyne A, Joel SP (2003) Bioorg Med Chem Lett 13:1207

    Article  CAS  Google Scholar 

  25. Arsequell G, Salvatella M, Valencia G, Fernández-Mayoralas A, Fontanella M, Venturi C, Jiménez-Barbero J, Marrón E, Rodríguez RE (2009) J Med Chem 52:2656

    Article  CAS  Google Scholar 

  26. Berrang B, Twine CE, Hennessee GL, Carroll FI (1975) Synth Commun 5:231

    Article  CAS  Google Scholar 

  27. Brown RT, Carter NE, Lumbard KW, Scheinmann F (1995) Tetrahedron Lett 36:8661

    Article  CAS  Google Scholar 

  28. Yoshimura H, Oguri K, Tsukamoto H (1968) Chem Pharm Bull 16:2114

    Article  CAS  Google Scholar 

  29. Mertz AAH (1993) Method for synthesizing glucuronides of 4,5-epoxy morphinanes. PCT Int Appl WO1993005057; March 18, 1993

  30. Welsh LH (1954) J Org Chem 19:1409

    Article  Google Scholar 

  31. Bognár R, Lévai A (1973) Acta Chim Acad Sci Hung 77:435

    Google Scholar 

  32. Bosch ME, Sánchez AR, Rojas FS, Ojeda CB (2007) J Pharm Biomed Anal 43:799

    Article  CAS  Google Scholar 

  33. Barrett DA, Pawula M, Knaggs RD, Shaw PN (1998) Chromatographia 47:667

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Váradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Váradi, A., Lévai, D., Tóth, G. et al. Glucosides of morphine derivatives: synthesis and characterization. Monatsh Chem 144, 255–262 (2013). https://doi.org/10.1007/s00706-012-0868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0868-4

Keywords

Navigation