Skip to main content
Log in

On the nonlinear elastic response of bodies in the small strain range

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The classical linearized approximation to describe the elastic response of solids is the most widely used model in solid mechanics. This approximate model is arrived at by assuming that the norm of the displacement gradient is sufficiently small so that one can neglect the square of the norm in terms of the norm. Recent experimental results on Titanium and Gum metal alloys, among other alloys, indicate with unmistakable clarity a nonlinear relationship between the strain and the stress in the range of strain wherein one would have to use the classical linearized theory of elasticity, namely wherein the square of the norm of the strain can be ignored with regard to the value of the strain, leading to a dilemma concerning the modeling of the response, as the classical nonlinear Cauchy elastic model would collapse to the linearized elastic model in this range. A novel and important generalization of the theory of elastic materials has been suggested by Rajagopal in Appl Math 48: 279–319, 2003 and Zeit Angew Math Phys 58: 309–317, 2007 that allows for an approximation wherein the linearized strain can be a nonlinear function of the stress. In this paper, we show how this new theory can be used to describe the new experiments on Titanium and Gum metal alloys and also clarify several issues concerning the domain of application of the classical linearized theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boussinesq J.: Application des Potentiels a L’etude de l’equilibre et due Mouvement des Solides Elastique. Gauthier Villars, Paris (1885)

    Google Scholar 

  2. Bustamante R.: Some topics on a new class of elastic bodies. Proc. R. Soc. A 465, 1377–1392 (2009). doi:10.1098/rspa.2008.0427

    Article  MATH  MathSciNet  Google Scholar 

  3. Bustamante R., Rajagopal K.R.: A note on plain strain and stress problems for a new class of elastic bodies. Math. Mech. Solids 15, 229–238 (2010). doi:10.1177/1081286508098178

    Article  MATH  MathSciNet  Google Scholar 

  4. Bustamante R., Rajagopal K.R.: Solutions of some simple boundary value problems within the context of a new class of elastic materials. Int. J. Nonlinear Mech. 46, 376–386 (2011). doi:10.1016/j.ijnonlinmec.2010.10.002

    Article  Google Scholar 

  5. Bustamante R., Rajagopal K.R.: On the inhomogeneous shearing of a new class of elastic bodies. Math. Mech. Solids 17, 762–778 (2012). doi:10.1177/1081286511429994

    Article  MathSciNet  Google Scholar 

  6. Bustamante R., Rajagopal K.R.: On a new class of electroelastic bodies Part I. Proc. R. Soc. Lond. Ser A 469, 20120521 (2013a)

    Article  MathSciNet  Google Scholar 

  7. Bustamante R., Rajagopal K.R.: A new class of electroelastic bodies Part II, boundary value problems. Proc. R. Soc. Lond. Ser A 469, 20130106 (2013b)

    Article  MathSciNet  Google Scholar 

  8. Carroll M.M.: Must elastic materials be hyperelastic?. Math. Mech. Solids 14, 369–376 (2009)

    Article  MATH  Google Scholar 

  9. Cauchy, A.L.: Recherches sur lequilibre et le mouvement interieur des corps solides ou fluids, elastiques ou non elastiques. Bull. Soc. Philomath. 9–13 (1823)

  10. Cauchy A.L.: Sur les equations qui experiments des conditions de equilibre ou le lois du mouvement interieur, d’ un corps solide, elastique un non elastique. Oeuvres (2) 8, 195–226 (1828)

    Google Scholar 

  11. Criscione J.C., Douglas A.S., Hunter W.C.: Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49, 871–897 (2001)

    Article  MATH  Google Scholar 

  12. Criscione J.C., Humphrey J.D., Douglas A.S., Hunter W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)

    Article  MATH  Google Scholar 

  13. Freed A.D., Einstein D.R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013)

    Article  MathSciNet  Google Scholar 

  14. Green, G.: On the laws of reflexion and refraction of light at the common surface of two non-crystallized media (1837). Trans. Camb. Philos. Soc. 7(1839-1842), 1-24. Papers, 245–269 (1839)

  15. Green, G.: On the propagation of light in crystallized media (1839). Trans. Camb. Philos. Soc. 7(1839-1842), 121–140. Papers 293–311 (1841)

    Google Scholar 

  16. Knowles J.K., Sternberg E.: Large deformation near a tip of an interface-crack between two neo-Hookean sheets. J. Elast. 13, 257–293 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kulvait V., Malek J., Rajagopal K.R.: Anti-plane stress state of a plate with a V-notch for a new class of elastic solids. Int. J. Fract. 179, 59–73 (2013)

    Article  Google Scholar 

  18. Li T., Morris J.W. Jr., Nagasako N., Kuramoto S., Chrzan D.C.: “Ideal” engineering alloys. Phys. Rev. Lett. 98, 105503 (2007)

    Article  Google Scholar 

  19. Malek J., Prusa V., Rajagopal K.R.: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48, 1907–1924 (2011)

    Article  MathSciNet  Google Scholar 

  20. Ortiz A., Bustamante R., Rajagopal K.R.: A numerical study of a plate with a hole for a new class of elastic bodies. Acta Mech. 223, 1971–1981 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rajagopal K.R.: The elasticity of elasticity. Zeit. Angew. Math. Phys. 58, 309–317 (2007)

    Article  MATH  Google Scholar 

  23. Rajagopal K.R.: Non-linear elastic bodies exhibiting limiting small strain. Math. Mech. Solids 16, 122–139 (2011a)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rajagopal K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011b)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rajagopal, K.R.: On the material symmetry of bodies described by implicit constitutive relations, Submitted for publication (2013)

  26. Rajagopal K.R., Srinivasa A.R.: On the response of non-dissipative solids. Proc. R. Soc. A 463, 357–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rajagopal K.R., Srinivasa A.R.: On a class of non-dissipative solids that are not hyperelastic. Proc. R. Soc. A 465, 493–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rajagopal K.R., Walton J.: Modeling fracture in the context of a strain limiting theory of elasticity: A single antiplane shear crack. Int. J. Fract. 169, 39–48 (2011)

    Article  MATH  Google Scholar 

  29. Saito T., Furuta T., Hwang J.H., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y., Sakuma T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003)

    Article  Google Scholar 

  30. Sendova T., Walton J.R.: A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale. Math. Mech. Solids 15, 368–413 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, Academic Press, New York (1971)

    Google Scholar 

  32. Srinivasa A.R.: On the upper triangular (or QR) decomposition for developing constitutive equations for Green elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  33. Talling R.J., Dashwood R.J., Jackson M., Kuramoto S., Dye D.: Determination of (C 11C 12) in Ti–36Nb–2Ta–3Zr–0.3O (wt%) (Gum metal). Scr. Mater. 59, 669–672 (2008)

    Article  Google Scholar 

  34. Tarantino A.M.: Nonlinear fracture mechanics for an elastic Bell material. Q. J. Mech. Appl. Math. 50, 436–456 (1997)

    Article  MathSciNet  Google Scholar 

  35. Thompson (Lord Kelvin) W.: Note on the integration of the equations of equilibrium of an elastic solid. Camb. Dublin Math. J. 3, 87–89 (1848)

    Google Scholar 

  36. Truesdell C.: A First Course in Rational Continuum Mechanics. Academic Press, New York (1977)

    MATH  Google Scholar 

  37. Truesdell C., Noll W.: The Non-Linear Field Theories of Mechanics. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  38. Withey E., Jin M., Minor A., Kuramoto S., Chrzan D.C., Morris J.W. Jr.: The deformation of “Gum Metal” in nanoindentation. Mater. Sci. Eng. A 493, 26–32 (2008)

    Article  Google Scholar 

  39. Zhang S.Q., Li S.J., Jia M.T., Hao Y.L., Yang R.: Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior. Scr. Mater. 60, 733–736 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopal, K.R. On the nonlinear elastic response of bodies in the small strain range. Acta Mech 225, 1545–1553 (2014). https://doi.org/10.1007/s00707-013-1015-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1015-y

Keywords

Navigation