Skip to main content
Log in

Coupled effects of capillary suction and fabric on the strength of moist granular materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper discusses the coupled effects of capillary suction and fabric on the behavior of partially saturated granular materials at pendular state when discrete liquid bridges form around particle contacts. Experimental results show that the soil–water characteristic curves of granular materials are affected by the internal structure formed during reconstitution of the specimen. The effect of capillary suction on the shear strength of moist sand varies with the direction of shearing relative to the bedding plane which is generally perpendicular to the major principal direction of the fabric tensor. When treating capillary attraction as interparticle forces at particle contacts, a micromechanics analysis shows that the coupling between capillary-attracting forces and fabric results in an additional stress tensor, which describes the anisotropic effect of capillary suction on the behavior of moist sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso E.E., Gens A., Josa A.: A constitutive model for partially saturated soils. Geotechnique 40(3), 405–430 (1990)

    Article  Google Scholar 

  2. Alonso-Marroquin, F., Luding, S., Herrmann, H.J., Vardoulakis, I.: Role of the anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E, 51, 051304, 1–18 (2005)

    Google Scholar 

  3. Baker R., Frydman S.: Unsaturated soil mechanics: critical review of physical foundations. Eng. Geol. 106(1–2), 26–39 (2009)

    Article  Google Scholar 

  4. Benahmed N., Canou J., Dupla J.-C.: Structure initiale et propriétés de liquéfaction statique d’un sable. Comptes Rendus Mecanique—C R MEC 332(11), 887–894 (2004)

    Article  MATH  Google Scholar 

  5. Bishop A.W.: The principle of effective stress. Teknisk Ukeblad 106(39), 859–863 (1959)

    Google Scholar 

  6. Cambou, B., Jean, M., Radjaï, F.: Micromechanics of Granular Materials. ISTE Ltd., London, UK (2009)

  7. Cho G.C., Santamarina J.C.: Unsaturated particulate materials—particle-level studies. J. Geotech. Geoenviron. Eng. 127(1), 84–96 (2001)

    Article  Google Scholar 

  8. Christoffersen J., Mehrabadi M.M., Nemat-Nasser S.J.: A micromechanical description of granular material behavior. J. Appl. Mech. 48, 339–344 (1981)

    Article  MATH  Google Scholar 

  9. Coleman J.D.: Stress strain relations for partly saturated soil. Correspondence. Geotechnique 12(4), 348–350 (1962)

    Article  Google Scholar 

  10. Fredlund D.G., Morgenstern N.R.: Stress state variables and unsaturated soils. J. Geotech. Eng. Div. ASCE 103(GT5), 447–466 (1977)

    Google Scholar 

  11. Gili J.A., Alonso E.E.: Microstructural deformation mechanisms of unsaturated granular soils. Int. J. Numer. Anal. Methods Geomech. 26, 433–468 (2002)

    Article  MATH  Google Scholar 

  12. Guo P.: Modified direct shear test for anisotropic strength of sand. J. Geotech. Geoenviron Eng. 134(9), 1311–1318 (2008)

    Article  Google Scholar 

  13. Guo P., Stolle D.F.E.: On the failure of granular materials with fabric effects. Soils Found. 45(4), 1–12 (2005)

    Google Scholar 

  14. Hicher P.-Y., Chang C.S.: A microstructural elastoplastic model for unsaturated granular materials. Int. J. Solids Struct. 44, 2304–2323 (2007)

    Article  MATH  Google Scholar 

  15. Higo Y., Oka F., Kimoto S., Sanagawa T., Matsushima Y.: Study of strain localization and microstructure changes in partially saturated sand during triaxial tests using microfocus X-ray CT. Soils Found. 51(1), 95–111 (2011)

    Article  Google Scholar 

  16. Houlsby G.T.: The work input to an unsaturated granular material. Geotechnique 47(1), 193–196 (1997)

    Article  Google Scholar 

  17. Ishihara, K.: Liquefaction and flow failure during earthquakes. Geotechnique 43(3), 351–415 (1993)

    Google Scholar 

  18. Kanatani K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22, 149–164 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kawai K., Karube D., Kato S.: The model of water retention curve considering effects of void ratio. In: Rahardjo, H., Toll, D.G., Leong, E.C. (eds) Unsaturated Soils for Asia, pp. 329–334. Balkema, Rotterdam (2000)

    Google Scholar 

  20. Koliji A., Laloui L., Cuisinier O., Vulliet L.: Suction induced effects on the fabric of a structured soil. Trans. Porous Med. 64, 261–278 (2006)

    Article  Google Scholar 

  21. Kruyt N.P.: Contact forces in anisotropic frictional granular materials. Int. J. Solids Struct. 40, 3537–3556 (2003)

    Article  MATH  Google Scholar 

  22. Lewis R.W., Schrefler B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)

    Google Scholar 

  23. Li X.S.: Effective stress in unsaturated soil: a microstructural analysis. Geotechnique 53(2), 273–277 (2003)

    Article  Google Scholar 

  24. Likos W.J., Lu N.: Hysteresis of capillary stress in unsaturated granular soil. J. Eng. Mech. 130(6), 646–655 (2004)

    Article  Google Scholar 

  25. Masin D.: Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils. Int. J. Numer. Anal. Methods Geomech. 34, 73–90 (2010)

    MATH  Google Scholar 

  26. Mulilis J.P., Seed H.B., Chan C.K., Mitchell J.K., Arulanandan K.: Effects of sample preparation on sand liquefaction. J. Geotech. Eng. Div. ASCE 103(2), 91–108 (1977)

    Google Scholar 

  27. Mitarai N., Nori F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)

    Article  Google Scholar 

  28. Mani R., Kadau D., Herrmann H.J.: liquid migration in sheared unsaturated granular media. Granul. Matter 15(4), 447–454 (2013)

    Article  Google Scholar 

  29. Nemat-Masset S.: A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48, 1541–1563 (2000)

    Article  MathSciNet  Google Scholar 

  30. Nuth M., Laloui L.: Advances in modelling hysteretic water retention curve in deformable soils. Comput. Geotech. 35(6), 835–844 (2008)

    Article  Google Scholar 

  31. Oda M.: Co-ordination number and its relation to shear strength of granular material. Soils Found. 17(2), 29–42 (1977)

    Article  MathSciNet  Google Scholar 

  32. Ouadfel H., Rothenburg L.: Stress-force-fabric relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201–221 (2001)

    Article  Google Scholar 

  33. Pietruszczak S., Mroz Z.: On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 25, 509–524 (2001)

    Article  MATH  Google Scholar 

  34. Pietruszczak S., Mroz Z.: Formulation of anisotropic failure criteria incorporating a microstructure tensor. Comput. Geotech. 26, 105–112 (2000)

    Article  Google Scholar 

  35. Pietruszczak S., Pande G.N.: On the mechanics of partially saturated soils. Comput. Geotech. 12, 55–71 (1991)

    Article  Google Scholar 

  36. Radjaï, F.: Particle-scale origins of shear strength in granular media. In: Evolution, vol. 1. Van Nostrand Reinhold, p. ix, 290. http://arxiv.org/abs/0810.4722 (2008)

  37. Radjaï F., Richefeu V.: Bond anisotropy and cohesion of wet granular materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 136(1909), 5123–5138 (2009)

    Article  Google Scholar 

  38. Radjaï F., Troadec H., Roux S.: Key features of granular plasticity. In: Antony, S.J., Hoyle, W., Ding, Y. (eds.) Granular Materials: Fundamentals and Applications, pp. 157–184. The Royal Society of Chemistry, Cambridge (2004)

    Chapter  Google Scholar 

  39. Richefeu, V., El Youssoufi, M.S., Radjaï, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304, 1–11 (2006)

    Google Scholar 

  40. Richefeu V., El Youssoufi M.S., Azéma E., Radjaï F.: Force transmission in dry and wet granular media. Powder Technol. 190(1), 258–263 (2009)

    Article  Google Scholar 

  41. Rothenburg L., Bathurst R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4), 601–614 (1989)

    Article  Google Scholar 

  42. Satake M.: Fabric tensor in granular materials. In: Vermeer, P.A., Luger, H.J. (eds.) Deformation and Failure of Granular Materials, pp. 63–68. Balkema, Rotterdam (1982)

    Google Scholar 

  43. Scholtès L., Hicher P.-Y., Chareyre B., Nicot F., Darve F.: On the capillary stress tensor in wet granular materials. Int. J. Numer. Anal. Methods Geomech. 33(10), 1289–1313 (2009)

    Article  MATH  Google Scholar 

  44. Scholtès L., Chareyre B., Nicot F., Darve F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(1), 64–75 (2009)

    Article  MATH  Google Scholar 

  45. Scholtès L., Chareyre B., Nicot F., Darve F.: Discrete modelling of capillary mechanisms in multi-phase granular media. Comput. Modeling Eng. Sci. 52(3), 297–318 (2009)

    MATH  Google Scholar 

  46. Simms P.H., Yanful E.K.: Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests. Can. Geotech. J. 38(4), 741–754 (2001)

    Article  Google Scholar 

  47. Thomson P.R., Wong R.C.K.: Specimen nonuniformities in water-pluviated and moist-tamped sands under undrained triaxial compression and extension. Can. Geotech. J. 45(7), 939–956 (2008)

    Article  Google Scholar 

  48. Thornton C.: Numerical simulation of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  49. Tokunaga, T.K., Olson, K.R., Wan, J.: Conditions necessary for capillary hysteresis in porous media: tests of grain-size and surface tension influences. Water Resour. Res. W05111, doi:10.1029/2003WR002908 (2004)

  50. Wang J., Dove J.E., Gutierrez M.S.: Discrete-continuum analysis of shear banding in the direct shear test. Géotechnique 57(6), 513–526 (2007)

    Article  Google Scholar 

  51. Zhou, A.N., Sheng, D., Carter, J.P.: Modelling the dependency of soil-water characteristic curves on initial density. In: Jotisankas, A., Sawangsuriya, A., Soralump, S., Mairaing, W. (eds.) Unsaturated Soils: Theory and Practice 2011, pp. 385–390. Kasetsart University, Thailand (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P. Coupled effects of capillary suction and fabric on the strength of moist granular materials. Acta Mech 225, 2261–2275 (2014). https://doi.org/10.1007/s00707-014-1124-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1124-2

Keywords

Navigation