Skip to main content
Log in

Geometric theory on the dynamics of a position-dependent mass particle

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The connection between geometry and dynamics is a canonical subject of analytical mechanics. A very traditional issue of this topic is the transformation of the mechanical problem at hand into a shortest-path problem. This means the mathematical translation of the dynamical problem into a problem of finding the geodesic of a certain space. In the classical domain of conservative systems, especially following the famous book of Lanczos, this translating bridge is established by the usual condition of constant total energy. By nature, the motion of a particle with position-dependent mass is not a conservative problem. Therefore, the classical geometrical theory of mechanics is not straightforwardly applicable. Given that, we here aim at developing the geometrical theory for the mechanics of a position-dependent mass particle. This is our intended contribution. To our best knowledge, the content of our single investigation is original within this variable mass context. Our theory will be developed in the light of the inverse problem of Lagrangian mechanics, which will accordingly sets the variational framework. From that, we will demonstrate the proper generalization of Euler-Maupertuis’ principle and the following generalization of Jacobi’s principle, which, analogously to the classical procedure, can be seen as intermediate steps to enter geometrical arguments. Then, the corresponding geodesic will appear. Finally, as a closing result, a theorem on the mathematical equivalence between such geodesic and the equation of motion of a position-dependent mass particle will be proved. Our investigation aims at providing the reader with a fundamental contribution to the geometry of variable mass mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casetta, L., Irschik, H., Pesce, C.P.: A generalization of Noether’s theorem for a non-material volume. ZAMM (2015). doi:10.1002/zamm.201400196

  2. Casetta L., Pesce C.P.: A brief note on the analytical solution of Meshchersky’s equation within the inverse problem of Lagrangian mechanics. Acta Mech. 226(7), 2435–2439 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casetta L.: The inverse problem of Lagrangian mechanics for a non-material volume. Acta Mech. 226(1), 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casetta L., Pesce C.P.: The inverse problem of Lagrangian mechanics for Meshchersky’s equation. Acta Mech. 225(6), 1607–1623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casetta L., Pesce C.P.: The generalized Hamilton’s principle for a non-material volume. Acta Mech. 224(4), 919–924 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casetta L., Pesce C.P.: On the generalized canonical equations of Hamilton for a time-dependent mass particle. Acta Mech. 223(12), 2723–2726 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casetta L., Pesce C.P.: On Seliger and Whitham’s variational principle for hydrodynamic systems from the point of view of ‘fictitious particles’. Acta Mech. 219(1–2), 181–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Copeland J.: Work-energy theorem for variable mass systems. Am. J. Phys. 50(7), 599–601 (1982)

    Article  Google Scholar 

  9. Cvetićanin L.: Principle of generalized velocities in dynamics of planar separation of a rigid body. Acta Mech. 226(8), 2511–2525 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cvetićanin L., Djukić Dj.: Dynamic properties of a body with discontinual mass variation. Nonlinear Dyn. 52(3), 249–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cvetićanin L.: Dynamics of Machines with Variable Mass. Gordon and Breach Science Publishers, London (1998)

    MATH  Google Scholar 

  12. Cvetićanin L.: Conservation laws in systems with variable mass. J. Appl. Mech. 60(4), 954–958 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cvetićanin L.: Stability of a clamped-free rotor with variable mass for the case of radial rubbing. J. Sound Vib. 129(3), 489–499 (1989)

    Article  Google Scholar 

  14. Eke F.O., Mao T.C.: On the dynamics of variable mass systems. Int. J. Mech. Eng. Educ. 30(2), 123–137 (2002)

    Article  Google Scholar 

  15. Irschik H., Holl H.J.: Lagrange’s equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics. Acta Mech. 226(1), 63–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Irschik, H., Belyaev, A.K. (eds.): Dynamics of mechanical systems with variable mass. In: Series: CISM—International Centre for Mechanical Sciences, vol. 557, p. 266. Springer, Berlin (2014)

  17. Irschik H.: The Cayley variational principle for continuous-impact problems: a continuum mechanics based version in the presence of a singular surface. J. Theor. Appl. Mech. 50(3), 717–727 (2012)

    Google Scholar 

  18. Irschik H., Holl H.J.: Mechanics of variable-mass systems—part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57(2), 145–160 (2004)

    Article  Google Scholar 

  19. Irschik H., Holl H.J.: The equations of Lagrange written for a non-material volume. Acta Mech. 153(3–4), 231–248 (2002)

    Article  MATH  Google Scholar 

  20. Leubner C., Krumm P.: Lagrangians for simple systems with variable mass. Eur. J. Phys. 11(1), 31–34 (1990)

    Article  Google Scholar 

  21. Pesce C.P., Casetta L., Santos F.M.: Equation of motion governing the dynamics of vertically collapsing buildings. J. Eng. Mech. 138(12), 1420–1431 (2012)

    Article  Google Scholar 

  22. Pesce C.P.: The application of Lagrange equations to mechanical systems with mass explicitly dependent on position. J. Appl. Mech. 70(5), 751–756 (2003)

    Article  MATH  Google Scholar 

  23. McIver D.B.: Hamilton’s principle for systems of changing mass. J. Eng. Math. 7(3), 249–261 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mikhailov G.K.: On the history of variable-mass system dynamics. Mech. Solid. 10(5), 32–40 (1975)

    MathSciNet  Google Scholar 

  25. Mušicki Dj.: General energy change law for systems with variable mass. Eur. J. Mech. A Solid. 18(4), 719–730 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lanczos C.: The Variational Principles of Mechanics. Dover, New York (1970)

    MATH  Google Scholar 

  27. Whittaker E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  28. Synge J.L.: On the geometry of dynamics. Philos. Trans. R. Soc. Lond. A. 226, 31–106 (1927)

    Article  MATH  Google Scholar 

  29. Pars L.A.: A Treatise on Analytical Dynamics. Heinemann, London (1965)

    MATH  Google Scholar 

  30. Gutowski R.: Analytical mechanics—part I. In: Zorski, H. (ed.) Foundations of Mechanics, pp. 1–120. Elsevier, New York (1992)

    Google Scholar 

  31. Goldstein H., Poole C., Safko J.: Classical Mechanics. Addison Wesley, San Francisco (2002)

    MATH  Google Scholar 

  32. Dugas R.: A History of Mechanics. Dover, New York (1988)

    MATH  Google Scholar 

  33. Laugwitz D.: Differential and Riemannian Geometry. Academic Press, New York (1965)

    MATH  Google Scholar 

  34. Landau, L.D., Lifshitz, E.M.: Mechanics. In: Course of Theoretical Physics, vol. 1, p. 165. Pergamon, Oxford (1969)

  35. Carroll S.: Spacetime and Geometry. An Introduction to General Relativity. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Casetta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casetta, L. Geometric theory on the dynamics of a position-dependent mass particle. Acta Mech 227, 1519–1532 (2016). https://doi.org/10.1007/s00707-016-1572-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1572-y

Keywords

Navigation