Skip to main content
Log in

Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a mixed-mode I/II fracture criterion to investigate the crack initiation in orthotropic materials in which the crack is directed along fibers. The minimum strain energy density criterion is extended to investigate the cracked orthotropic materials. The reinforced isotropic solid model based on collinear crack propagation along fibers is proposed as an advantageous model to study the fracture behavior of composites. This model introduces fibers as reinforcements of the isotropic matrix in orthotropic materials in which their effects are qualified by defining reinforcement factors at tension and shear modes. The proposed criterion can predict the crack initiation phenomenon. Therefore, in this study a new concept of linear fracture toughness for orthotropic materials is proposed. Experimental data are used to validate the output of the proposed criterion. The coincidence of fracture limit curves and experimental data indicates the ability of the new criterion to predict crack initiation in orthotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(F_\mathrm{Y}, F_\mathrm{U}\) :

Yield, ultimate force at F–D diagram

\(K_{\mathrm{Ic}}^{\mathrm{L}} ,K_{\mathrm{IIc}}^{\mathrm{L}}\) :

Mode I and mode II linear fracture toughness

\(K_{\mathrm{Ic}}^{\mathrm{NL}} ,K_{\mathrm{IIc}}^{\mathrm{NL}}\) :

Mode I and mode II nonlinear fracture toughness

\(K_{\mathrm{Ic}} ,K_{\mathrm{IIc}}\) :

Mode I and mode II fracture toughness

\(K_\mathrm{I} ,K_{\mathrm{II}}\) :

Mode I and mode II stress intensity factors

\(\rho _{\mathrm{NL}} ,\rho _{\mathrm{L}}\) :

Nonlinear and linear damage factor

\(w_{\mathrm{m}} ,w_{\mathrm{f}} ,w\) :

The width of matrix, fiber, RVE

\(l, \delta l\) :

RVE’s Length and longitudinal displacement

t :

The thickness of the RVE

\(\varepsilon _{\mathrm{m}} ,\varepsilon _{\mathrm{f}} ,\varepsilon \) :

Strain of the matrix, fiber, RVE

\(\sigma _{\mathrm{m}} ,\sigma _{\mathrm{f}} ,\sigma \) :

Normal stress of the matrix, fiber, RVE

\(E_{\mathrm{m}} ,E_{\mathrm{f}} ,E_{xx} ,E_{yy}\) :

Elastic module of matrix, fiber, RVE along fiber, RVE across fiber

\(G_{\mathrm{m}} ,G_{\mathrm{f}} ,G_{xy} ,G_{yx}\) :

Shear module of matrix, fiber, RVE in the xy plane

\(F_{\mathrm{m}} ,F_{\mathrm{f}} ,F\,\mathrm{or} F_\mathrm{c}\) :

The force applied to matrix, fiber, RVE

\(A_{\mathrm{m}} ,A_{\mathrm{f}} ,A\) :

The area in which the force is applied to matrix, fiber, RVE

\(\gamma _{\mathrm{m}} ,\gamma _{\mathrm{f}} ,\gamma \) :

The shear angle of the matrix, fiber, RVE

\(\tau _{\mathrm{m}} ,\tau _{\mathrm{f}} ,\tau \) :

Shear stress of matrix, fiber, RVE

\({\Delta }_{\mathrm{m}} ,{\Delta }_{\mathrm{f}} ,{\Delta }\) :

The longitudinal displacements of matrix, fiber and RVE in pure shear loading

\(V_{\mathrm{m}} ,V_{\mathrm{f}}\) :

Matrix and fiber fraction in a composite

\(E_{ij}, G_{ij} ,\nu _{ij} \) :

Elastic, shear modulus and Poisson’s ratio of a composite in different directions

\({\xi }_1 ,{\xi }_2 ,{\xi }_3 \) :

Reinforcement, ReSt, factors

\(\sigma _{ij}, \,\varepsilon _{ij} \) :

Stress and strain functions

\(\sigma _{ij}^{\mathrm{iso}} ,\sigma _{ij}^{\mathrm{ortho}} \) :

Stress state of isotropic and orthotropic materials

\(f_{ij} \left( \theta \right) ,\,g_{ij} \left( \theta \right) \) :

Angular function in stress state

\(S,S_\mathrm{c} \) :

Strain energy density factor, critical strain energy density factor

\(\frac{\mathrm{d}W}{\mathrm{d}V}\) :

Strain energy density

\(r, \theta \) :

Polar distance from the crack tip, polar angle

\(C_{ij}, \,C_{ij}^{\prime } \) :

Compliance matrix for plane stress and plane strain condition

\(A_{11} ,A_{22} ,A_{12} \) :

The factors in SED criterion

\(r_\mathrm{c} ,\theta _\mathrm{c} \) :

Critical distance from crack tip and the path of crack growth in SED criterion

LRT :

Longitudinal, radial and tangential axis in wood

References

  1. Carraro, P.A., Zappalorto, M., Quaresimin, M.: A comprehensive description of inter fiber failure in fiber reinforced composites. Theor. Appl. Fract. Mech. 79, 91–97 (2015)

    Article  Google Scholar 

  2. Li, Y.D., Xiong, T., Cai, Q.G.: Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder. Acta Mech. 226(4), 1183–1199 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ross, R.J.: Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190, 509 p. 1 v., 190 (2010)

  4. Wu, E.M.: Application of fracture mechanics to anisotropic plates. J. Appl. Mech. 34(4), 967–974 (1967)

    Article  Google Scholar 

  5. Lin, W.H., Tsai, Y.M.: Fracture of hybrid laminates containing a pair of collinear cracks in the central layer. Acta Mech. 82(3), 159–173 (1990)

    Article  Google Scholar 

  6. Leicester, R.H.: Application of linear fracture mechanics in design of timber structures. In: Conference of the Australian, pp. 156–164. Fracture Group, Melbourne (1974)

  7. Reiterer, A., Sinn, G., Stanzl-Tschegg, S.E.: Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Mater. Sci. Eng. A 332(1–2), 29–36 (2002)

    Article  Google Scholar 

  8. Hunt, D.G., Croager, W.P.: Mode II fracture toughness of wood measured by a mixed-mode test method. J. Mater. Sci. Lett. 1(2), 77–79 (1982)

    Article  Google Scholar 

  9. Mall, S., Murphy, J.F., Shottafer, J.E.: Criterion for mixed mode fracture in wood. J. Eng. Mech. 109(3), 680–690 (1983)

    Article  Google Scholar 

  10. Erdogan, F., Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85(4), 519–525 (1963)

    Article  Google Scholar 

  11. Sih, G.C.: Strain-energy-density factor applied to mixed mode crack problems. Int. J. Fract. 10(3), 305–321 (1974)

    Article  Google Scholar 

  12. Hussain, M.A., Pu, S.L., Underwood, J.: Strain energy release rate for a crack under combined mode I and mode II. In: Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. ASTM International (1974)

  13. Saouma, V.E., Ayari, M.L., Leavell, D.A.: Mixed mode crack propagation in homogeneous anisotropic solids. Eng. Fract. Mech. 27(2), 171–184 (1987)

    Article  Google Scholar 

  14. Carloni, C., Nobile, L.: Maximum circumferential stress criterion applied to orthotropic materials. Fatigue Fract. Eng. Mater. Struct. 28(9), 825–833 (2005)

    Article  Google Scholar 

  15. Nobile, L., Piva, A., Viola, E.: On the inclined crack problem in an orthotropic medium under biaxial loading. Eng. Fract. Mech. 71(4–6), 529–546 (2004)

    Article  Google Scholar 

  16. Gdoutos, E.E., Zacharopoulos, D.A., Meletis, E.I.: Mixed-mode crack growth in anisotropic media. Eng. Fract. Mech. 34(2), 337–346 (1989)

    Article  Google Scholar 

  17. Jernkvist, L.O.: Fracture of wood under mixed mode loading: I. Derivation of fracture criteria. Eng. Fract. Mech. 68(5), 549–563 (2001)

    Article  Google Scholar 

  18. Jernkvist, L.O.: Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies. Eng. Fract. Mech. 68(5), 565–576 (2001)

    Article  Google Scholar 

  19. Buczek, M.B., Herakovich, C.T.: A normal stress criterion for crack extension direction in orthotropic composite materials. J. Compos. Mater. 19(6), 544–553 (1985)

    Article  Google Scholar 

  20. Fakoor, M., Rafiee, R.: Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion. Strength Mater. 45(3), 378–385 (2013)

    Article  Google Scholar 

  21. Romanowicz, M., Seweryn, A.: Verification of a non-local stress criterion for mixed mode fracture in wood. Eng. Fract. Mech. 75(10), 3141–3160 (2008)

    Article  Google Scholar 

  22. Perelmuter, M.: Nonlocal criterion of bridged cracks growth: analytical analysis. Acta Mech. 226(2), 397–418 (2015)

    Article  MathSciNet  Google Scholar 

  23. Anaraki, A.G., Fakoor, M.: General mixed mode I/II fracture criterion for wood considering T-stress effects. Mater. Des. 31(9), 4461–4469 (2010)

    Article  Google Scholar 

  24. Budiansky, B., O’connell, R.J.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12(2), 81–97 (1976)

    Article  Google Scholar 

  25. Anaraki, A.G., Fakoor, M.: Mixed mode fracture criterion for wood based on a reinforcement micro-crack damage model. Mater. Sci. Eng. A 527(27–28), 7184–7191 (2010)

    Article  Google Scholar 

  26. Anaraki, A.G., Fakoor, M.: A new mixed-mode fracture criterion for orthotropic materials, based on strength properties. J. Strain Anal. Eng. Des. 46(1), 33–44 (2011)

    Article  Google Scholar 

  27. Fakoor, M., Khansari, N.M.: Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties. Eng. Fract. Mech. 153, 407–420 (2016)

    Article  Google Scholar 

  28. Van der Put, T.A.C.M.: A new fracture mechanics theory for orthotropic materials like wood. Eng. Fract. Mech. 74(5), 771–781 (2007)

    Article  Google Scholar 

  29. Sih, G.C., Paris, P.C., Irwin, G.R.: On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech. 1(3), 189–203 (1965)

    Article  Google Scholar 

  30. Fakoor, M.: Augmented Strain Energy Release Rate (ASER): a novel approach for investigation of mixed-mode I/II fracture of composite materials. Eng. Fract. Mech. 179, 177–189 (2017)

    Article  Google Scholar 

  31. Fett, T., Rizzi, G., Bahr, H.A., Bahr, U., Pham, V.B., Balke, H.: Analytical solutions for stress intensity factor, T-stress and weight function for the edge-cracked half-space. Int. J. Fract. 146(3), 189–195 (2007)

    Article  Google Scholar 

  32. He, Q.L., Wu, L., Li, M., Yu, H.: Prediction of mode I crack growth resistance based on a comparative investigation of J-integral and energy dissipation rate concept. Acta Mech. 215(1–4), 175–191 (2010)

    Article  Google Scholar 

  33. http://abaqus.software.polimi.it/v2016/books/stm/default.htm?startat=ch03s06ath79.html

Download references

Acknowledgements

The authors would like to acknowledge the financial support of University of Tehran for this research under Grant No. 28686/01/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Fakoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakoor, M., Manafi Farid, H. Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials. Acta Mech 230, 281–301 (2019). https://doi.org/10.1007/s00707-018-2308-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2308-y

Navigation