Skip to main content
Log in

Analytical solution of elastic deformations inside and outside circular contact area between tilted rigid punch and elastic half space

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper proposes an analytical model for the Boussinesq problem between a tilted rigid punch and an elastic half space to enable the analysis of elastic deformations inside and outside a contact area. Inside the contact area, two types of pressure distributions are applied: one generates a flat elastic deformation, and the other produces a tilted elastic deformation. The projection of this elastic deformation varies depending on the observed horizontal direction because the elastic deformation is non-axisymmetric. To calculate integrals for the non-axisymmetric elastic deformation, we use the polar coordinate system with two angular coordinates, which can enable the calculation of an integral at any arbitrary point. The proposed model can obtain the relationship between the pressure distribution and the elastic deformations inside and outside a contact area from any arbitrary direction. In addition, the normal load and torque applied inside the contact area are obtained, and these parameters are normalized using the contact radius and the elastic modulus. At the zero-pressure point around the contact edge, the elastic deformation is smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 156–171 (1881). https://doi.org/10.1515/crll.1882.92.156

    Article  MATH  Google Scholar 

  2. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 324, 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  Google Scholar 

  3. Liechti, K.M., Schnapp, S.T., Swadener, J.G.: Contact angle and contact mechanics of a glass/epoxy interface. Int. J. Fract. 86, 361–374 (1997). https://doi.org/10.1023/A:1007472628431

    Article  Google Scholar 

  4. Myshkin, N.K., Petrokovets, M.I., Kovalev, A.V.: Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribol. Int. 38, 910–921 (2005). https://doi.org/10.1016/j.triboint.2005.07.016

    Article  Google Scholar 

  5. Momozono, S., Takeuchi, H., Iguchi, Y., Nakamura, K., Kyogoku, K.: Dissipation characteristics of adhesive kinetic friction on amorphous polymer surfaces. Tribol. Int. 48, 122–127 (2012). https://doi.org/10.1016/j.triboint.2011.11.016

    Article  Google Scholar 

  6. Fujiwara, R., Hemthavy, P., Takahashi, K., Saito, S.: The effect of surface conductivity and adhesivity on the electrostatic manipulation condition for dielectric microparticles using a single probe. J. Micromech. Microeng. 26, 055010 (2016). https://doi.org/10.1088/0960-1317/26/5/055010

    Article  Google Scholar 

  7. Baek, D., Saito, S., Takahashi, K.: Estimating work of adhesion using spherical contact between a glass lens and a PDMS block. J. Adhes. Sci. Technol. 32, 158–172 (2018). https://doi.org/10.1080/01694243.2017.1343519

    Article  Google Scholar 

  8. Greenwood, J.A., Williamson, J.B.P., Bowden, F.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 295, 300–319 (1966). https://doi.org/10.1098/rspa.1966.0242

    Article  Google Scholar 

  9. Majumdar, A., Bhushan, B.: Fractal model of elastic–plastic contact between rough surfaces. J. Tribol. 113, 1–11 (1991). https://doi.org/10.1115/1.2920588

    Article  Google Scholar 

  10. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006). https://doi.org/10.1016/j.surfrep.2006.04.001

    Article  Google Scholar 

  11. Sridhar, I., Johnson, K.L., Fleck, N.A.: Adhesion mechanics of the surface force apparatus. J. Phys. Appl. Phys. 30, 1710–1719 (1997). https://doi.org/10.1088/0022-3727/30/12/004

    Article  Google Scholar 

  12. Taljat, B., Zacharia, T., Kosel, F.: New analytical procedure to determine stress–strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411–4426 (1998). https://doi.org/10.1016/S0020-7683(97)00249-7

    Article  MATH  Google Scholar 

  13. Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899–3918 (2001). https://doi.org/10.1016/S1359-6454(01)00295-6

    Article  Google Scholar 

  14. Pelletier, H.: Predictive model to estimate the stress–strain curves of bulk metals using nanoindentation. Tribol. Int. 39, 593–606 (2006). https://doi.org/10.1016/j.triboint.2005.03.019

    Article  Google Scholar 

  15. Beghini, M., Bertini, L., Fontanari, V.: Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441–2459 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.068

    Article  MATH  Google Scholar 

  16. Saito, S., Ochiai, T., Yoshizawa, F., Dao, M.: Rolling behavior of a micro-cylinder in adhesional contact. Sci. Rep. 6, 34063 (2016). https://doi.org/10.1038/srep34063

    Article  Google Scholar 

  17. Green, A.E.: On Boussinesq’s problem and penny-shaped cracks. Math. Proc. Camb. Philos. Soc. 45, 251–257 (1949). https://doi.org/10.1017/S0305004100024804

    Article  MathSciNet  MATH  Google Scholar 

  18. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965). https://doi.org/10.1016/0020-7225(65)90019-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Barber, J.R.: Some polynomial solutions for the non-axisymmetric Boussinesq problem. J. Elast. 14, 217–221 (1984). https://doi.org/10.1007/BF00041668

    Article  MATH  Google Scholar 

  20. Menga, N., Carbone, G.: The surface displacements of an elastic half-space subjected to uniform tangential tractions applied on a circular area. Eur. J. Mech. A Solids 73, 137–143 (2019). https://doi.org/10.1016/j.euromechsol.2018.07.011

    Article  MathSciNet  MATH  Google Scholar 

  21. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  22. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  23. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  24. Takahashi, K., Mizuno, R., Onzawa, T.: Influence of the stiffness of the measurement system on the elastic adhesional contact. J. Adhes. Sci. Technol. 9, 1451–1464 (1995). https://doi.org/10.1163/156856195X00121

    Article  Google Scholar 

  25. Sneddon, I.N.: Boussinesq’s problem for a flat-ended cylinder. Math. Proc. Camb. Philos. Soc. 42, 29 (1946). https://doi.org/10.1017/S0305004100022702

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoji Iguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iguchi, Y., Hemthavy, P., Saito, S. et al. Analytical solution of elastic deformations inside and outside circular contact area between tilted rigid punch and elastic half space. Acta Mech 230, 4311–4320 (2019). https://doi.org/10.1007/s00707-019-02505-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02505-9

Navigation