Skip to main content
Log in

Characterization of ubiquitiform crack fracture parameters based on ubiquitiform theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Ubiquitiform geometry, as an important tool to study complex and irregular configurations, provides an important theoretical basis for solving nonlinear problems. In this paper, considering the ubiquitiformal characteristics of crack propagation, two key ubiquitiformal parameters of complexity and yardstick length were introduced into the theoretical derivation of Mode I crack propagation. The effects of complexity on the stress intensity factor and crack propagation forces were also analyzed using numerical examples. Furthermore, the uniaxial tensile failure behavior of cast iron materials under different crack forms was studied. The fracture surface morphology of a tensile specimen was measured using a laser confocal microscope, and the complexity of cross-section contours and the statistical self-similar interval was calculated via the box-counting method. Experimental results verified the accuracy of the expression of ubiquitiform critical stress. It is demonstrated that ubiquitiform theory fundamentally solves the difficulties in application of fractal theory. More rational results can be obtained when ubiquitiform fracture parameters are adopted in fracture problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carpinteri, A., Spagnoli, A.: A fractal analysis of size effect on fatigue crack growth. Int. J. Fatigue 26(2), 125–133 (2004)

    MATH  Google Scholar 

  2. Carpinteri, A., Spagnoli, A., Vantadori, S.: A multifractal analysis of fatigue crack growth and its application to concrete. Eng. Fracture Mech. 77(6), 974–984 (2010)

    Google Scholar 

  3. Yavari, A., Sarkani, S., Moyer, E.T.: The mechanics of self-similar and self-affine fractal cracks. Int. J. Fract. 114(1), 1–27 (2002)

    Google Scholar 

  4. Wnuk, M.P., Yavari, A.: On estimating stress intensity factors and modulus of cohesion for fractal cracks. Eng. Fract. Mech. 70(13), 1659–1674 (2003)

    Google Scholar 

  5. Kashtanov, A., Petrov, Y.: Fractal models in fracture mechanics. Int. J. Fract. 128, 271–276 (2004)

    MATH  Google Scholar 

  6. Liu, A.Z., Wang, T., Zhang, S.: The analysis of 16MnR steel compact tensile fatigue fracture after high temperature. Appl. Mech. Mater. 253–255, 341–344 (2013)

    Google Scholar 

  7. Saouma, V.E., Barton, C.C., Gamaleldin, N.A.: Fractal characterization of fracture surfaces in concrete. Eng. Fract. Mech. 35(90), 47–53 (1990)

    Google Scholar 

  8. Krohn, C.E., Thompson, A.H.: Fractal sandstone pores: Automated measurements using scanning-electron-microscope images. Phys. Rev. B 33(9), 6366–6374 (1986)

    Google Scholar 

  9. Chen, C., Runt, J.: Fractal analysis of polystyrene fracture surfaces. Polym. Commun. 30(11), 334–335 (1989)

    Google Scholar 

  10. Saouma, V.E., Barton, C.C.: Fractals, fractures, and size effects in concrete. J. Eng. Mech. 120(4), 835–854 (1994)

    Google Scholar 

  11. Mu, Z.Q., Lung, C.W.: Studies on the fractal dimension and fracture toughness of steel. J. Phys. D Appl. Phys. 21(5), 848–850 (1988)

    Google Scholar 

  12. Carpinteri, A.: Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech. Mater. 18(2), 89–101 (1994)

    Google Scholar 

  13. Xie, H.: Fractal effect of irregularity of crack branching on the fracture toughness of brittle materials. Int. J. Fract. 41(4), 267–274 (1989)

    Google Scholar 

  14. Pande, C.S., Richards, L.E., Louat, N., et al.: Fractal characterization of fractured surfaces. Acta Metallurgica 35(7), 1633–1637 (1987)

    Google Scholar 

  15. Ray, K.K., Mandal, G.: Study of correlation between fractal dimension and impact energy in a high strength low alloy steel. Acta Metallurgica Et Materialia 40(3), 463–469 (1992)

    Google Scholar 

  16. Charkaluk, E., Bigerelle, M., Iost, A.: Fractals and fracture. Eng. Fract. Mech. 61(1), 119–139 (1998)

    Google Scholar 

  17. Nagahama, H.: A fractal criterion for ductile and brittle fracture. J. Appl. Phys. 75(75), 3220–3222 (1994)

    Google Scholar 

  18. Ou, Z.C., Li, G.Y., Duan, Z.P.: Concept of ubiquitiform in applied nonlinear science. Acta Armamentarii 33, 261–266 (2012). (in Chinese)

    Google Scholar 

  19. Ou, Z.C., Li, G.Y., Duan, Z.P., Huang, F.L.: Ubiquitiform in applied mechanics. J. Theor. Appl. Mech. 52(1), 37–46 (2014)

    Google Scholar 

  20. Li, G.Y., Ou, Z.C., Xie, R., Duan, Z.P., Huang, F.L.: A ubiquitiformal one-dimensional steady-state conduction model for a cellular material rod. Int. J. Thermophys. 37, 41 (2016)

    Google Scholar 

  21. Li, J.Y., Ou, Z.C., Tong, Y., Duan, Z.P., Huang, F.L.: A statistical model for ubiquitiformal crack extension in quasi-brittle materials. Acta Mech. 228(7), 2725–2732 (2017)

    Google Scholar 

  22. Ou, Z.C., Yang, M., Li, G.Y., Duan, Z.P., Huang, F.L.: Ubiquitiformal fracture energy. J. Theor. Appl. Mech. 55(3), 1101–1108 (2017)

    Google Scholar 

  23. Wnuk, M.P., Yavari, A.: A correspondence principle for fractal and classical cracks. Eng. Fract. Mech. 72(18), 2744–2757 (2005)

    Google Scholar 

  24. Borodich, M.E.: Some fractal models of fracture. J. Mech. Phys. Solids 45(2), 239–259 (1997)

    MATH  Google Scholar 

  25. Carpinteri, A., Puzzi, S.: Self-similarity in concrete fracture: size-scale effects and transition between different collapse mechanisms. Int. J. Fract. 154(1–2), 167–175 (2008)

    MATH  Google Scholar 

  26. Carpinteri, A., Paggi, M.A.: A unified fractal approach for the interpretation of the anomalous scaling laws in fatigue and comparison with existing models. Int. J. Fract. 161(1), 41–52 (2010)

    MATH  Google Scholar 

  27. Baran, G.R., Roques-Carmes, C., Wehbi, D., et al.: Fractal characteristics of fracture surfaces. J. Am. Ceram. Soc. 75(10), 2687–2691 (1992)

    Google Scholar 

  28. Huang, Z.H., Tian, J.F., Wang, Z.G.: Comments on some of the fractal equations. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 128(2), L13–L14 (1990)

    Google Scholar 

  29. Xie, H.P., Wang, J.A.: Direct fractal measurement of fracture surfaces. Int. J. Solids Struct. 36(20), 3073–3084 (1999)

    MATH  Google Scholar 

  30. Silva, P.M., Florindo, J.B.: A statistical descriptor for texture images based on the box counting fractal dimension. Physica A Stat. Mech. Appl. 528, 121469 (2019). https://doi.org/10.1016/j.physa.2019.121469

    MathSciNet  Google Scholar 

  31. So, G.B., So, H.R., Jin, G.G.: Enhancement of the Box-Counting Algorithm for fractal dimension estimation. Pattern Recognit. Lett. 98, 53–58 (2017)

    Google Scholar 

  32. Mosolov, A.B.: Mechanics of fractal cracks in brittle solids. Europhys. Lett. (EPL) 24(8), 673–678 (1993)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund for the National Security Academic Fund (NSAF) (Grant Numbers U1630144); and the National Natural Science Foundation of China (Numbers 11872300, 11572244, 11972285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshan Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Zhang, N., Cao, X. et al. Characterization of ubiquitiform crack fracture parameters based on ubiquitiform theory. Acta Mech 231, 2589–2601 (2020). https://doi.org/10.1007/s00707-020-02642-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02642-6

Navigation