Skip to main content
Log in

Band structure analysis of wave propagation in piezoelectric nano-metamaterials as periodic nano-beams considering the small scale and surface effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the bandgap properties of a piezoelectric periodic nano-beam considering size and surface effects using a modified couple stress theory. The nano-beam is made of some finite periodic arrays of piezoelectric (PZT-5H) and epoxy segments. The Bloch theorem for periodic materials together with the transfer matrix method are employed for analyzing the problem. The band structure analyzed by the current model incorporates both the material length scale parameter and surface effects in the bulk and surface layer of the beam, respectively. The main objective of this study is to investigate the effects of different parameters such as external electrical loading, length scale parameter, surface effects and geometrical properties of the nano-beam on the width of bandgaps and the starting frequencies. It is found that when the external electrical field is increased, the surface effects on the bandgaps are increased. Also, for high values of length to height ratio, ignoring the surface effects reduces the number of bandgaps. The results of the current study may be helpful in designing piezoelectric periodic nano-sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baas, A.F.D.: Nanostructured Metamaterials: Exchange Between Experts in Electromagnetics and Material Science. EUR-OP, Belgium (2010)

    Google Scholar 

  2. Claeys, C.C., Vergote, K., Sas, P., Desmet, W.: On the potential of tuned resonators to obtain low-frequency vibrational stop bands in periodic panels. Sound Vib. (2013). https://doi.org/10.1016/j.jsv.2012.09.047

    Article  Google Scholar 

  3. Sigalas, M., Economou, E.: Elastic and acoustic wave band structure. Sound Vib. (1992). https://doi.org/10.1016/0022-460x(92)90059-7

    Article  Google Scholar 

  4. Yu, D., Liu, Y., Zhao, H., Wang, G., Qiu, J.: Flexural vibration band gaps in Euler–Bernoulli beams with locally resonant structures with two degrees of freedom. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.73.064301

    Article  Google Scholar 

  5. Wen, J.: Theory and experimental investigaion of flexural wave propagation in thin rectangular plate with periodic structure. Chin. J. Mech. Eng. (2005). https://doi.org/10.3901/cjme.2005.03.385

    Article  Google Scholar 

  6. Yan, Z., Jing, H., Linhua, J.: Flexural vibration band gaps characteristics in phononic crystal Euler beams on two-parameter foundation. Adv. Mech. Eng. (2013). https://doi.org/10.1155/2013/935258

    Article  Google Scholar 

  7. Xiang, H.J., Shi, Z.: Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation. Struct. Eng. Mech. (2011). https://doi.org/10.12989/sem.2011.40.3.373

    Article  Google Scholar 

  8. Casalotti, A., El-Borgi, S., Lacarbonara, W.: Metamaterial beam with embedded nonlinear vibration absorbers. Int. J. Non Linear Mech. (2018). https://doi.org/10.1016/j.ijnonlinmec.2017.10.002

    Article  Google Scholar 

  9. Beli, D., Arruda, J.R.F., Ruzzene, M.: Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. (2018). https://doi.org/10.1016/j.ijsolstr.2018.01.027

    Article  Google Scholar 

  10. Ebrahimi, F., Daman, M.: Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam. Smart Struct. Syst. (2017). https://doi.org/10.12989/sss.2017.20.3.351

    Article  Google Scholar 

  11. Ebrahimi, F., Dehghan, M., Seyfi, A.: Eringen’s nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes. Adv. Nano Res. (2019). https://doi.org/10.12989/anr.2019.7.1.001

    Article  Google Scholar 

  12. Ghorbanpour, A.A., Pourjamshidian, M., Arefi, M.: Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress. Smart Struct. Syst. (2019). https://doi.org/10.12989/sss.2019.23.2.141

    Article  Google Scholar 

  13. Kaghazian, A., Hajnayeb, A., Foruzande, H.: Free vibration analysis of a Piezoelectric nanobeam using nonlocal elasticity theory. Struct. Eng. Mech. (2017). https://doi.org/10.12989/sem.2017.61.5.617

    Article  Google Scholar 

  14. Ansari, R., Ashrafi, M.A., Hosseinzadeh, S.: Vibration characteristics of piezoelectric microbeams based on the modified couple stress theory. Shock Vib. (2014). https://doi.org/10.1155/2014/598292

    Article  Google Scholar 

  15. Ebrahimi, F., Safarpour, H.: Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects. Wind Struct. (2018). https://doi.org/10.12989/was.2018.27.6.431

    Article  Google Scholar 

  16. Ehyaei, J., Akbarizadeh, M.R.: Vibration analysis of micro composite thin beam based on modified couple stress. Struct. Eng. Mech. (2017). https://doi.org/10.12989/sem.2017.64.4.403

    Article  Google Scholar 

  17. Kocatürk, T., Akbaş, Ş.D.: Wave propagation in a microbeam based on the modified couple stress theory. Struct. Eng. Mech. (2013). https://doi.org/10.12989/sem.2013.46.3.417

    Article  Google Scholar 

  18. Kong, S., Zhou, S., Nie, Z., Wang, K.: The size-dependent natural frequency of Bernoulli-Euler micro-beams. Eng. Sci. (2008). https://doi.org/10.1016/j.ijengsci.2007.10.002

    Article  MATH  Google Scholar 

  19. Gurtin, M.E., Murdoch, A.L.: A continuum theory of elastic material surfaces. Ration. Mech. Anal. (1975). https://doi.org/10.1007/BF00261375

    Article  MATH  Google Scholar 

  20. Gao, X.L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. (2015). https://doi.org/10.1007/s00707-014-1189-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, X.L., Mahmoud, F.F.: A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Z. Angew. Math. Phys. (2014). https://doi.org/10.1007/s00033-013-0343-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Juntarasaid, C., Pulngern, T., Chucheepsakul, S.: Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity. Physica E Low Dimens. Syst. Nanostruct. (2012). https://doi.org/10.1016/j.physe.2012.08.005

    Article  MATH  Google Scholar 

  23. Yan, Z., Jiang, L.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. Phys. D Appl. Phys. (2011). https://doi.org/10.1088/0022-3727/44/7/075404

    Article  Google Scholar 

  24. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. (1994). https://doi.org/10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  25. Zbib, H.M., Aifantis, E.C.: Size effects and length scales in gradient plasticity and dislocation dynamics. Scr. Mater (2003). https://doi.org/10.1016/S1359-6462(02)00342-1

    Article  Google Scholar 

  26. Sab, K., Legoll, F., Forest, S.: Stress gradient elasticity theory: existence and uniqueness of solution. J. Elast. (2016). https://doi.org/10.1007/s10659-015-9554-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Polizzotto, C.: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int. J. Solids Struct. (2016). https://doi.org/10.1016/j.ijsolstr.2016.04.001

    Article  Google Scholar 

  28. Ebrahimi, F., Zokaee, F., Mahesh, V.: Analysis of the size-dependent wave propagation of a single lamellae based on the nonlocal strain gradient theory. Biomater. Biomed. Eng. (2019). https://doi.org/10.12989/bme.2019.4.1.045

    Article  Google Scholar 

  29. Ebrahimi, F., Dabbagh, A.: Wave dispersion characteristics of nonlocal strain gradient double layered graphene sheets in hygro-thermal environments. Struct. Eng. Mech. (2018). https://doi.org/10.12989/sem.2018.65.6.645

    Article  Google Scholar 

  30. Ghorbanpour, A.A., Pourjamshidian, M., Arefi, M.: Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories. Smart Struct. Syst. (2017). https://doi.org/10.12989/sss.2017.20.3.329

    Article  Google Scholar 

  31. Narendar, S., Gopalakrishnan, S.: Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes. Comput. Mater. Sci. (2009). https://doi.org/10.1016/j.commatsci.2009.09.021

    Article  Google Scholar 

  32. Wang, L.: Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory. Comput. Mater. Sci. (2010). https://doi.org/10.1016/j.commatsci.2010.06.019

    Article  Google Scholar 

  33. Yang, Y., Zhang, L., Lim, C.W.: Wave propagation in double-walled carbon nanotubes on a novel analytically nonlocal Timoshenko-beam model. J. Sound Vib. (2011). https://doi.org/10.1016/j.jsv.2010.10.028

    Article  Google Scholar 

  34. Narendar, S., Gupta, S.S., Gopalakrishnan, S.: Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model. (2012). https://doi.org/10.1016/j.apm.2011.11.073

    Article  MathSciNet  MATH  Google Scholar 

  35. Aydogdu, M.: Longitudinal wave propagation in multiwalled carbon nanotubes. Compos. Struct. 107, 578–584 (2014). https://doi.org/10.1016/j.compstruct.2013.08.031

    Article  Google Scholar 

  36. Liu, Z., Rumpler, R., Feng, L.: Broadband locally resonant metamaterial sandwich plate for improved noise insulation in the coincidence region. Compos. Struct. (2018). https://doi.org/10.1016/j.compstruct.2018.05.033

    Article  Google Scholar 

  37. Miranda, E.J.P., Nobrega, E.D., Ferreira, A.H.R., Dos Santos, J.M.C.: Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff–Love theory. Mech. Syst. Signal Process. (2019). https://doi.org/10.1016/j.ymssp.2018.06.059

    Article  Google Scholar 

  38. Sheng, M., Guo, Zh, Qin, Q., He, Y.: Vibration characteristics of a sandwich plate with viscoelastic periodic cores. Compos. Struct. (2018). https://doi.org/10.1016/j.compstruct.2018.07.110

    Article  Google Scholar 

  39. Zouari, S., Brocail, J., Génevaux, J.M.: Flexural wave band gaps in metamaterial plates: a numerical and experimental study from infinite to finite models. J. Sound Vib. (2018). https://doi.org/10.1016/j.jsv.2018.07.030

    Article  Google Scholar 

  40. Ebrahimi, F., Barati, M.: Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects. Struct. Eng. Mech. (2018). https://doi.org/10.12989/sem.2018.65.4.435

    Article  Google Scholar 

  41. Zhang, W.M., Hu, K.M., Peng, Z.K., Meng, G.: Tunable micro and nanomechanical resonators. Sensors (2015). https://doi.org/10.3390/s151026478

    Article  Google Scholar 

  42. Wagner, M., Graczykowski, B., Sebastian, R.J., El Sachat, A., Sledzinska, M., Alzina, F., Sotomayor, T.C.: Two-dimensional phononic crystals: disorder matters. Nano Lett. (2016). https://doi.org/10.1021/acs.nanolett.6b02305

    Article  Google Scholar 

  43. Yan, Z., Wei, C., Zhang, C.: Band structures of elastic SH waves in nanoscale multi-layered functionally graded phononic crystals with/without nonlocal interface imperfections by using a local RBF collocation method. Acta Mech. Solida Sin. (2017). https://doi.org/10.1016/j.camss.2017.07.012

    Article  Google Scholar 

  44. Goncalves, B.R., Karttunen, A.T., Romanoff, J.: A nonlinear couple stress model for periodic sandwich beams. Compos. Struct. (2019). https://doi.org/10.1016/j.compstruct.2019.01.034

    Article  Google Scholar 

  45. Zhang, G.Y., Gao, X.L., Ding, S.R.: Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mech. (2018). https://doi.org/10.1007/s00707-018-2207-2

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, G.Y., Gao, X.L., Bishop, J.E.: Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Compos. Struct. (2018). https://doi.org/10.1016/j.compstruct.2017.11.040

    Article  Google Scholar 

  47. Zhang, S., Gao, Y.: Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa8878

    Article  Google Scholar 

  48. Aly, A.H., Nagaty, A., Mehaney, A.: Thermal properties of one-dimensional piezoelectric phononic crystal. Eur. Phys. J. B 91(10), 1–5 (2018). https://doi.org/10.1140/epjb/e2018-90297-y

    Article  Google Scholar 

  49. Qian, D.: Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory. J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-018-3124-4

    Article  Google Scholar 

  50. Chen, A.L., Yan, D.J., Wang, Y.S., Zhang, C.: In-plane elastic wave propagation in nanoscale periodic piezoelectric/piezomagnetic laminates. Mech. Sci. (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.017

    Article  Google Scholar 

  51. Qian, D.: Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. Appl. Phys. (2018). https://doi.org/10.1063/1.5039952

    Article  Google Scholar 

  52. Seo, J.H.: Wide bandgap semiconductor based micro/nano devices. Micromachines (2019). https://doi.org/10.3390/mi10030213

    Article  Google Scholar 

  53. Li, W., Meng, F., Chen, Y., Li, Y.F., Huang, X.: Topology optimization of photonic and phononic crystals and metamaterials: a review. Adv. Theory Simul. (2019). https://doi.org/10.1002/adts.201900017

    Article  Google Scholar 

  54. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science (2006). https://doi.org/10.1126/science.1124005

    Article  Google Scholar 

  55. Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Eur. Phys. Lett. (2010). https://doi.org/10.1209/0295-5075/91/56007

    Article  Google Scholar 

  56. Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology (2011). https://doi.org/10.1088/0957-4484/22/24/245703

    Article  Google Scholar 

  57. Park, S.K., Gao, X.L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. (2008). https://doi.org/10.1007/s00033-006-6073-8

    Article  MathSciNet  MATH  Google Scholar 

  58. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. (1963). https://doi.org/10.1007/bf02327219

    Article  Google Scholar 

  59. Ke, L.L., Wang, Y.S., Reddy, J.N.: Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos. Struct. (2014). https://doi.org/10.1016/j.compstruct.2014.05.048

    Article  Google Scholar 

  60. Gao, X.L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. (2001). https://doi.org/10.1016/S0020-7683(00)00047-0

    Article  MATH  Google Scholar 

  61. Liu, L., Hussein, M.: Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. Appl. Mech. (2012). https://doi.org/10.1115/1.4004592

    Article  Google Scholar 

  62. Li, Z., He, Y., Lei, J., Guo, S., Liu, D., Wang, L.: A standard experimental method for determining the material length scale based on modiÞed couple stress theory. Int. J. Mech. Sci. (2018). https://doi.org/10.1016/j.ijmecsci.2018.03.035

    Article  Google Scholar 

  63. Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi (b) (2006). https://doi.org/10.1002/pssb.200541521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Abolbashari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espo, M., Abolbashari, M.H. & Hosseini, S.M. Band structure analysis of wave propagation in piezoelectric nano-metamaterials as periodic nano-beams considering the small scale and surface effects. Acta Mech 231, 2877–2893 (2020). https://doi.org/10.1007/s00707-020-02678-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02678-8

Navigation