Skip to main content
Log in

The application of various anatomical techniques for studying the hydraulic network in tomato fruit pedicels

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The abscission zone in fruit pedicels plays an important role in affecting not only water uptake in the developing fruit, but also in the transport of chemical signals from root to shoot. In order to characterize the hydraulic network of tomato fruit pedicels, we applied various techniques, including light, fluorescence microscopy, electron microscopy, maceration, tissue clearing, and X-ray computed tomography. Because of significant changes in xylem anatomy, the abscission zone in tomato fruit pedicels is illustrated to show a clear reduction in hydraulic conductance. Based on anatomical measurements, the theoretical axial xylem conductance was calculated via the Hagen–Poiseuille law, suggesting that the hydraulic resistance of the abscission zone increases at least two orders of magnitude compared to the pedicel zone near the stem. The advantages and shortcomings of the microscope techniques applied are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • André JP, Catesson AM, Liberman M (1999) Characters and origin of vessels with heterogenous structure in leaf and flower abscission zones. Can J Bot 77:253–261

    Article  Google Scholar 

  • Baum SF, Tran PN, Silk WK (2000) Effects of salinity on xylem structure and water use in growing leaves of sorghum. New Phytol 146:119–127

    Article  Google Scholar 

  • Bondada BR, Matthews MA, Shackel KA (2005) Functional xylem in the post-veraison grape berry. J Exp Bot 56:2949–2957

    Article  CAS  PubMed  Google Scholar 

  • Bosshard HH, Kučera V (1973) Die driedimensionale Structur-analyse des Holzes—1: Die Vernetzung des Gefässsystems in Fagus sylvatica L. Holz Roh-u Werkstoff 31:437–445

    Article  Google Scholar 

  • Braun HJ (1959) Die Vernetzung der Gefäβe bei Populus. Z Bot 47:421–435

    Google Scholar 

  • Braun HJ (1970) Funktionelle Histologie der sekundären Sprossachse I. Das Holz. Encyclopaedia of Plant Anatomy Band IX, Teil 1. Gebrüder Borntraeger, Berlin

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–626

    Article  PubMed  Google Scholar 

  • Davies WJ, Bacon MA, Thompson DS, Sobeih W, Gonzales-Rodriguez L (2000) Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants’ chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J Exp Bot 51:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Ferguson BJ, Beveridge CA (2008) Apical wilting and petiole xylem vessel diameter of the rms2 branching mutant of pea are shoot controlled and independent of a long-distance signal regulating branching. Plant Cell Physiol 49:791–800

    Article  CAS  PubMed  Google Scholar 

  • Ehret DL, Ho LC (1986) Translocation of calcium in relation to tomato fruit growth. Ann Bot 58:679–688

    CAS  Google Scholar 

  • Ellmore GS, Zanne A, Orians CM (2006) Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. Bot J Linn Soc 150:61–71

    Article  Google Scholar 

  • Esau K (1977) Anatomy of seed plants. Wiley, New York

    Google Scholar 

  • Hayward HE (1938) The structure of economic plants. Macmillan, New York

    Google Scholar 

  • Herr JM Jr (1993) Clearing techniques for the study of vascular plant tissues in whole structures and thick sections. Pages 63–84, in Tested studies for laboratory teaching, Volume 5 (C.A. Goldman, P.L. Hauta, M.A. O’Donnell, S.E. Andrews, and R. van der Heiden, Eds). Proceedings of the 5th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 115

  • Ho LC, Grange RI, Picken AJ (1987) An analysis of the accumulation of water and dry matter in tomato fruit. Plant Cell Environ 10:157–162

    Google Scholar 

  • Kitin PB, Fujii T, Abe H, Funada R (2004) Anatomy of the vessel network within and between tree rings of Fraxinus lanuginosa (Oleaceae). Am J Bot 91:779–788

    Article  Google Scholar 

  • Kučera L, Bosshard HH (1973) Die zweidimensionale Gewebeanalyse, dargestellt an Untersuchungen über das Gefässsystem von Fagus sylvatica. Hol Roh-u Werkstoff 31:343–347

    Article  Google Scholar 

  • Lee DR (1989) Vasculature of the abscission zone of tomato fruit: implications for transport. Can J Bot 67:1898–1902

    Article  Google Scholar 

  • Matthews MA, Shackel KA (2005) Growth and water transport in fleshy fruit. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier, Boston, pp 181–197

    Chapter  Google Scholar 

  • Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence, and other cell separation processes. Ann Rev Plant Biol 53:131–158

    Article  CAS  Google Scholar 

  • Skene DS (1969) A three dimensional reconstruction of the wood of Eucalyptus maculata Hook. Holzforschung 23:33–37

    Article  Google Scholar 

  • Tabuchi T (1999) Comparison on the development of abscission zones in the pedicels between two tomato cultivars. J Jap Soc Hort Sci 68:993–999

    Article  Google Scholar 

  • Tabuchi T, Arai N (2000) Formation of the secondary cell division zonein tomato pedicels at different fruit growing stages. J Japan Soc Hort Sci 69:156–160

    Article  Google Scholar 

  • Van Ieperen W, Volkov VS, Van Meeteren U (2003) Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress. J Exp Bot 54:317–324

    Article  PubMed  Google Scholar 

  • Van Ieperen W, Meeteren UV, Oosterkamp J, Trouwborst G (2005) Macro- and microscopic aspects of fruit water relations influencing growth and quality in tomato. Acta Hort (ISHS) 682:501–506

    Google Scholar 

  • Zimmermann MH, Tomlinson PB (1966) Analysis of complex vascular systems in plants: optical shuttle method. Science 152:72–73

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH, Tomlinson PB (1967) A method for the analysis of the course of vessels in wood. IAWA Bull 1:2–6

    Google Scholar 

  • Zwieniecki MA, Melcher PJ, Holbrook MN (2001) Hydraulic properties of individual xylem vessels of Fraxinus americana. J Exp Bot 52:257–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Centre of X-ray Tomography at Ghent University (Belgium) for technical support and the CROPWAT project for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Rančić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rančić, D., Quarrie, S.P., Radošević, R. et al. The application of various anatomical techniques for studying the hydraulic network in tomato fruit pedicels. Protoplasma 246, 25–31 (2010). https://doi.org/10.1007/s00709-010-0115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0115-y

Keywords

Navigation