Skip to main content
Log in

Nitrogen-regulated changes in total amino acid profile of maize genotypes having contrasting response to nitrogen deficit

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Sustainable development of cellular organisms depends on a precise coordination between the carbon and nitrogen metabolisms within the living system. Inorganic N is assimilated into amino acids which serve as an important N source for various regulatory metabolic pathways in plants. This study investigates the role of amino acids in C/N balance by examining changes in amino acid profile in the leaves and roots of low-N-tolerant (PHEM-2) and low-N-sensitive (HM-4) maize genotypes grown hydroponically under N-sufficient (4.5 mM), N-deficient (0.05 mM) and N-restoration conditions. N application effectively altered the level of cysteine, methionine, asparagine, arginine, phenylalanine, glycine, glutamine, aspartate and glutamate in both genotypes. Under low N (0.05 mM), the asparagine and glutamine contents increased, while those of glutamate, phenylalanine and aspartate decreased in both genotypes. However, serine content increased in PHEM-2 but decreased in HM-4. Resupply of N to low-N-grown plants of both genotypes restored the amino acids level to that in the control; the restoration was quicker and more consistent in PHEM-2 than in HM-4. Based on alteration of amino acid level, a strategy can be developed to improve the ability of maize to adapt to low-N environments by way of an improved N utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrol YP, Raghuram N, Sachdev MS (2007) Agricultural nitrogen use and its environmental implications. IK International Publishing House, New Delhi

    Google Scholar 

  • Ariga J, Jayne TS, Nyoro J (2006) Factors driving the growth in fertilizer consumption in Kenya, 1990–2005: sustaining the momentum in Kenya and lessons for broader replicability in Sub-Saharan Africa, Njoro, pp 1–59

  • Atanasova E (2008) Effect of nitrogen sources on the nitrogenous forms and accumulation of amino acid in head cabbage. Plant Soil Environ 54:66–71

    CAS  Google Scholar 

  • Azevedo RA, Lea PJ (2001) Lysine metabolism in higher plants. Amino Acids 20:261–279

    Article  CAS  PubMed  Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S (2008) Climate change and water (Technical Paper of Intergovernmental Panel on Climate Change), IPCC Secretariat (http://www.ipcc.ch/meetings/session28/doc13.pdf)

  • Bosch L, Alegría A, Farré R (2006) Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J Chromatogr B 831:176–183

    Article  CAS  Google Scholar 

  • Clarkson DT, Sarker LR, Purves JV (1989) Depression of nitrate and ammonium transport in barley plants with diminished sulfate status: evidence of co-regulation of nitrogen and sulfate intake. J Exp Bot 40:953–963

    Article  CAS  Google Scholar 

  • Dhillon MK, Kumar S, Gujar GT (2014) A common HPLC-PDA method for amino acid analysis in insects and plants. Indian J Exptl Biol 52:73–79

    CAS  Google Scholar 

  • FAO (2007) Current world fertilizer trends and outlook to 2010/11. Food & Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Foyer CH, Parry M, Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54:585–593

    Article  CAS  PubMed  Google Scholar 

  • Fritz C, Mueller C, Matt P, Feil R, Stitt M (2006) Impact of the C-N status on the amino acid profile in tobacco source leaves. Plant Cell Environ 29:2055–2076

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Matoh T (2009) Plant nutrition: roots of life for fundamental biology and better crop production. Plant Cell Physiol 50(1):2–4

    Article  CAS  PubMed  Google Scholar 

  • Ganie AH, Ahmad A, Pandey R, Aref IM, Yousuf PY, Ahmad S, Iqbal M (2015) Metabolite profiling of low-P tolerant and low-P sensitive maize genotypes under phosphorus starvation and restoration conditions. PLoS One 10:e0129520. doi:10.1371/journal.pone.0129520

    Article  PubMed  PubMed Central  Google Scholar 

  • Glass ADM (2003) Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Crit Rev Plant Sci 22:453–470

    Article  CAS  Google Scholar 

  • Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011) Nitrogen-efficient rice cultivars can reduce nitrate pollution. Environ Sci Pollut Res 18:1184–1193

    Article  CAS  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad A, Qureshi MI, Iqbal M (2012) Proteomic analysis for low and high nitrogen-responsive proteins in the leaves of rice genotypes grown at three nitrogen levels. Appl Biochem Biotechnol 168:834–850

    Article  CAS  PubMed  Google Scholar 

  • Hesse H, Nikiforova V, Gakiére B, Hoefgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot 55:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Howarth JR, Parmar S, Jones J, Shepherd CE, Corol D-I, Galster AM, Hawkins ND, Miller SJ, Baker JM, Verrier PJ et al (2008) Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling. J Exp Bot 59:3675–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • KARI (2005) Kenya Agricultural Research Institute annual report. KARI 2005

  • Kaur G, Chandna R, Pandey R, Abrol YP, Iqbal M, Ahmad A (2011) Sulfur starvation and restoration affect nitrate uptake and assimilation in rapeseed. Protoplasma 248:299–311

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Suter M, von Ballmoos P, Hesse H, Kraehenbuehl U, Rennenberg H, Brunold C (2002) Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiol 130:1406–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koprivova A, Suter M, Op den Camp R, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157:1255–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Liao G, Nirujogi RS, Pinto SM, Shaw PG, Huang TC, Wan J, Qian J, Gowda H, Wu X, Lv DW, Zhang K, Manda SS, Pandey A, Hayward DS (2015) Phosphoproteomic profiling reveals Epstein-Barr virus protein kinase integration of DNA damage response and mitotic signaling. PLoS Pathol 11(12):e1005346. doi:10.1371/journal.ppat.1005346

    Article  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wu YH, Yang JJ, Liu YD, Shen FF (2008) Protein degradation and remobilization during leaf senescence. J Plant Biol 51:11–19

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th (ed). Kluwer Academic Publishers, Dordrecht, Netherland

    Book  Google Scholar 

  • NAAS (2005) Policy options for efficient nitrogen use. National Academy of Agricultural Sciences, New Delhi

    Google Scholar 

  • Neuberg M, Pavlikova D, Pavlik M, Balik J (2010) The effect of different nitrogen nutrition on praline and asparagine content in plant. Plant Soil Environ 56:305–311

    CAS  Google Scholar 

  • Noctor G, Novitskaya L, Lea PJ, Foyer CH (2002) Co-ordination of leaf minor amino acid contents in crop species: significance and interpretation. J Exp Bot 53:939–945

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Driscoll SP (1997) Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source: sink imbalance. Plant Cell Environ 20:110–116

    Article  CAS  Google Scholar 

  • Pavlík M, Pavlíková D, Balík J, Neuberg M (2010a) The contents of amino acids and sterols in maize plants growing under different nitrogen conditions. Plant Soil Environ 56:125–132

    Google Scholar 

  • Pavlík M, Pavlíková D, Staszková L, Neuberg M, Kaliszová R, Száková J, Tlustoš P (2010b) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol Environ Saf 73:1309–1313

    Article  PubMed  Google Scholar 

  • Prosser IM, Purves JV, Saker LR, Clarkson DT (2001) Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. J Exp Bot 52:113–121

    Article  CAS  PubMed  Google Scholar 

  • Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—could enzymatic regulation hold the key? Trends in Biotechnol 27(7):388–397

    Article  CAS  Google Scholar 

  • Sanchez E, Lopez-lefebre LR, Garcia PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L.cv.Strike). J Plant Physiol 158:593–598

    Article  CAS  Google Scholar 

  • Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U (2012) Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. Plant Physiol 160:1384–1406

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilsner J, Kassner N, Struck C, Lohaus G (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 221:328–338

    Article  CAS  PubMed  Google Scholar 

  • Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M (2009) Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ 32:300–318

    Article  CAS  PubMed  Google Scholar 

  • Urbanczyk-Wochniak E, Fernie AR (2005) Metabolic profiling reveals altered nitrogen nutrient regimes has diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J Exp Bot 56:309–321

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Hawkesford MJ, McGrath SP (1999) Sulphur assimilation and effects on yield and quality of wheat. J Cereal Sci 30:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support [Grant number BT/PB/02/08/2008] from the Department of Biotechnology, Ministry of Science and Technology, Govt. of India is gratefully acknowledged.

Author contributions

Conceived and designed the experiments: AA RP SA MI. Performed the experiments: AHG PYY. Analyzed the data: AHG AA RP IMA MI. Contributed reagents/materials/analysis tools: AA MI. Wrote the paper: AHG AA RP SA MI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iqbal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

ESM 1

(DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganie, A.H., Ahmad, A., Yousuf, P.Y. et al. Nitrogen-regulated changes in total amino acid profile of maize genotypes having contrasting response to nitrogen deficit. Protoplasma 254, 2143–2153 (2017). https://doi.org/10.1007/s00709-017-1106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1106-z

Keywords

Navigation