Skip to main content
Log in

The forensics of fulgurite formation

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Natural disasters such as forest fires can result in extensive and costly property damage. These events may be the result of a human error or system failure triggered by electrical discharge, and in such circumstances may form a fulgurite. Understanding fulgurites and their formation may be critical in determining the cause of the fire or other, shock-related event. Here we identify several distinguishing features of fulgurites formed in association with downed power lines, including the presence of melted conductors, transformation of quartz to cristobalite, and morphological differences including increased glass percentage and smaller internal voids. These features are consequences of how heat is transferred to and through a target rock material as it melts and forms a fulgurite, and are predicted from both first principles of diffusive heat transfer, and empirically-derived reaction kinetics for mineral transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beudant FS, Hachette JNP, Savart F (1828) Experience sur la formation des tubes fulminaires. Ann Chim Phys 37:319–321

    Google Scholar 

  • Block K (2011) Fulgurite classification, petrology, and implications for planetary science. Thesis, University of Arizona

  • Breneman RC, Halloran JW (2014) Kinetics of cristobalite formation in sintered silica. J Am Ceram Soc 97:2272–2278

    Article  Google Scholar 

  • Bussiere W, Rochette D, Memiaghe S, Velleaud G, Latchimy T, André P (2007) Measurement of the pre-arcing time and the fulgurite length in HBC fuse in the case of tests performed with an AC 100 kVA station. ICEFA 8:35–40

    Google Scholar 

  • Butcher DD (1907) Experiments on artificial fulgurites. Proc Phys Soc Lond 21:254

    Article  Google Scholar 

  • Carter EA, Pasek MA, Smith T, Kee TP, Hines P, Edwards HGM (2010a) Rapid Raman mapping of a fulgurite. Anal Bioanal Chem 397:2647–2658

    Article  Google Scholar 

  • Carter EA, Hargreaves MD, Kee TP, Pasek MA, Edwards HGM (2010b) A Raman spectroscopic study of a fulgurite. Philos T Roy Soc A 368:3087–3097

    Article  Google Scholar 

  • Collins GS, Melosh HJ, Pasek MA (2012) Can lightning strikes produce shocked quartz? LPSC 43:1160

    Google Scholar 

  • Crespo TM, Fernandez RPL, Laguna RG (2009) The fulgurite of Torre de Moncorvo (Portugal): description and analysis of the glass. Eur J Mineral 21:783–794

    Article  Google Scholar 

  • Deschamps T, Kassir-Bodon A, Sonneville C, Margueritat J, Martinet C, de Ligny D, Mermet A, Champagnon B (2013) J Phys Condens Matter 25:025402

  • Emanuel AE, Cyganski D, Orr JA, Shiller S, Gulachenski EM (1990) High impedance fault arcing on sandy soil in 15 kV distribution feeders: contributions to the evaluation of the low frequency spectrum. IEEE T Power Deliver 5:676–686

    Article  Google Scholar 

  • Ende M, Schorr S, Kloess G, Franz A, Tovar M (2012) Shocked quartz in Sahara fulgurite. Eur J Mineral 24:499–507

    Article  Google Scholar 

  • Essene EJ, Fisher DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234:189–193

    Article  Google Scholar 

  • Ferriere L, Koeberl C, Reimold WU (2009) Characterisation of ballen quartz and cristobalite in impact breccias: new observations and constraints on ballen formation. Eur J Mineral 21:203–217

    Article  Google Scholar 

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn't, and why. Earth-Sci Rev 98:123–170

    Article  Google Scholar 

  • Garcia-Guinea J, Furio M, Fernandez-Hernan M et al (2009) The quartzofeldspathic fulgurite of Bustarviejo (Madrid): glassy matrix and silicon phases. LPI Contrib 1473:34–35

    Google Scholar 

  • Gieré R, Wimmenauer W, Müller-Sigmund H, Wirth R, Lumpkin GR, Smith KL (2015) Lightning-induced shock lamellae in quartz. Am Mineral 100:1645–1648

    Article  Google Scholar 

  • Grapes R (2010) Pyrometamorphism. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Haynes WM (2009) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press, Boca Raton

    Google Scholar 

  • Hefeeda M, Bagheri M (2009) Forest fire modeling and early detection using wireless sensor networks. Ad Hoc Sens Wireless Net 7:169–224

    Google Scholar 

  • Heidler F, Zischank W, Flisowski Z, Bouquegneau C, Mazzetti C (2008) Parameters of lightning current given in IEC 62305-background, experience and outlook. Intl Conf Light Prot 29:1–6

    Google Scholar 

  • Ingersoll LR, Koepp OA (1924) Thermal diffusivity and conductivity of some soil materials. Phys Rev 24:92–93

    Article  Google Scholar 

  • Jones BE, Jones KS, Rambo KJ, Rakov VA, Jerald J, Uman MA (2005) Oxide reduction during triggered-lightning fulgurite formation. J Atmos Sol-Terr Phy 67:423–428

    Article  Google Scholar 

  • Jordan AP, Stubbs TJ, Wilson JK, Schwadron NA, Spence HE (2017) The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions. Icarus 283:352–358

    Article  Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbuster T, Danisi RM (eds) Highlights in mineralogical crystallography. W. De Gruyter, Berlin, pp 1–30

  • Lang T, Pédeboy S, Rison W et al (2016) WMO world record lightning extremes: longest reported flash distance and longest reported flash duration. B Am Meterol Soc, in press. doi:10.1175/BAMS-D-16-0061.1

  • Laverde V, Ab Kadir MA, Gomes C (2012) Performance of backfill materials under impulse and AC testings. IEEE Intl Conf Light Prot:1–7

  • Lim S, Gomes C, Kadir M, Nourirad G, Malek Z (2015) Behaviour of backfill materials for electrical grounding systems under high voltage conditions. J Eng Sci Technol 10:811–826

    Google Scholar 

  • Lowry JF (1975) Artificial fulgurites. Int J Rock Mech Min Sci Geomech Abstr 12:157–158 Pergamon

    Article  Google Scholar 

  • Lynch WT (1972) Calculation of electric field breakdown in quartz as determined by dielectric dispersion analysis. J Appl Phys 43:3274–3278

    Article  Google Scholar 

  • Meek JM, Craggs JD (1978) Electrical breakdown of gases. Wiley series in plasma physics. Wiley, New York

    Google Scholar 

  • Myers WM, Peck AB (1925) A fulgurite from South Amboy, New Jersey. Am Mineral 10:152–155

    Google Scholar 

  • Pasek MA (2017) Schreibersite on the early earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335

    Article  Google Scholar 

  • Pasek M, Block K (2009) Lightning-induced reduction of phosphorus oxidation state. Nat Geosci 2:553–556

    Article  Google Scholar 

  • Pasek MA, Hurst M (2016) A fossilized energy distribution of lightning. Sci Rep 6:30586

    Article  Google Scholar 

  • Pasek MA, Block K, Pasek V (2012) Fulgurite morphology: a classification scheme and clues to formation. Contrib Mineral Petrol 164:477–492

    Article  Google Scholar 

  • Perriot A, Vandembroucq D, Barthel E, Martinez V, Grosvalet L, Martinet C, Champagnon B (2006) Raman microspectroscopic characterization of amorphous silica plastic behavior. J Am Ceram Soc 89:596–601

    Article  Google Scholar 

  • Petty JJ (1936) The origin and occurrence of fulgurites in the Atlantic coastal plain. Am J Sci 31:188–201

  • Plyashkevich AA, Minyuk PS, Subbotnikova TV, Alshevsky AV (2016) Newly formed minerals of the Fe–P–S system in Kolyma fulgurite. Dokl Earth Sci 467:380–383

    Article  Google Scholar 

  • Raeside JD (1968) A note on artificial fulgurites from a soil in south-east Otago. New Zeal J Sci 11: 72–76

  • Rollman W (1868) Uber die kuntsliche Herstellung von Blitzrohren: Ann Phys-Berlin 134:605–615

  • Sheffer AA (2007) Chemical reduction of silicates by meteorite impacts and lightning strikes. Dissertation, University of Arizona

  • Sturaro A, Vianello A, Guerriero P, Rella R (2016) Analysis of metals and surface modification of leaves for the evaluation of forest fires started by electrical discharge. J Environ Anal Chem 3:2

    Google Scholar 

  • Uman MA (1964) The peak temperature of lightning. J Atm Terr Phys 26:123–128

    Article  Google Scholar 

  • Uman MA (2008) The art and scienc of lightning protection. Cambridge Unviersity Press, Cambridge

    Book  Google Scholar 

  • Uman MA, McLain DK (1969) Magnetic field of lightning return stroke. J Geophys Res 74:6899–6910

    Article  Google Scholar 

Download references

Acknowledgements

We thank Abdel Monem Mohamed Soltan, two anonymous reviewers, and handling editor Herbert Pöllmann for helpful comments on this manuscript. The present work was jointly supported by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA) astrobiology program under the NSF Center for Chemical Evolution, CHE-1504217, and also by the NASA exobiology and evolutionary biology program, grant NNX14AN96G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Pasek.

Additional information

Editorial handling: H. Poellmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasek, M.A., Pasek, V.D. The forensics of fulgurite formation. Miner Petrol 112, 185–198 (2018). https://doi.org/10.1007/s00710-017-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0527-x

Keywords

Navigation