Skip to main content
Log in

Ultrahigh-Resolution Combined Coronal Optical Coherence Tomography Confocal Scanning Ophthalmoscope (OCT/SLO): A pilot study

  • Originalarbeiten
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Summary

OBJECTIVE: To evaluate clinical images from a prototype ultrahigh resolution (UHR) combined coronal optical coherence tomography/confocal scanning ophthalmoscope (OCT/SLO) and to compare them to standard-resolution OCT/SLO images on the same patients. DESIGN: Cross-sectional pilot-study. PARTICIPANTS: Sixty-six eyes of 42 patients with various macular pathologies, such as age-related macular degeneration, macular edema, macular hole, central serous retinopathy, epiretinal membrane and posterior vitreous traction syndrome. METHODS: Each subject was first scanned with a standard-resolution OCT/SLO that has an axial resolution of ∼10 micron. Immediately following, patients were scanned with the prototype UHR OCT/SLO device. The UHR system employs a compact super luminescent diode (SLD) with a 150 nm bandwidth centered at 890 nm, which allows imaging of the retina with an axial resolution of 3 microns. Both coronal and longitudinal OCT scans were acquired with each system, and compared side-by-side. Scan quality was assessed for the observer's ability to visualize the vitreo-retinal interface and retinal layers – in particular of the outer retina/RPE/choroidal interface, increased discrimination of pathological changes, and better signal intensity. MAIN OUTCOME MEASURES: Ultrahigh and standard-resolution coronal and longitudinal OCT/SLO images of macular pathologies. RESULTS: In the side-by-side comparison with the commercial standard-resolution OCT/SLO images, the scans in the Ultrahigh resolution OCT/SLO images were superior in 85% of cases. Relatively poor quality images were attributed to lower signal-to-noise ratio, limited focusing, or media opacities. Several images that had a better signal intensity in the standard-resolution OCT/SLO system were found to show more retinal detail in the UHR system. In general, intraretinal layers in the UHR OCT/SLO images were better delineated in both coronal and longitudinal scans. Enhanced details were also seen in the outer retina/RPE/choroidal complex. The UHR OCT/SLO system produced better definition of morphological changes in several macular pathologies. CONCLUSIONS: Broadband SLD-based UHR OCT/SLO offers a compact, efficient, and economic enhancement to the currently available clinical OCT imaging systems. UHR OCT/SLO imaging enhanced the quality of the OCT C-scans, facilitated appreciation of vitreo-retinal pathologies, and improved sensitivity to small changes in the retina, and the outer retina/RPE/choroidal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Huang D, Swanson EA, Lin CP, et al (1991) Optical coherence tomography. Science 254: 1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Podoleanu AG, Dobre GM, Seeger M, et al (1998) Low coherence interferometry for en-face imaging of the retina. Lasers and Light 8: 187–192

    Google Scholar 

  • Hee MR, Izatt JA, Swanson EA, et al (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113: 325–332

    PubMed  CAS  Google Scholar 

  • Schuman JS, Puliafito CA, Fujimoto JG (2004) Optical Coherence Tomography of Ocular Diseases (2nd edn). Thorofare (USA): SLACK Inc.

  • Drexler W, Morgner U, Ghanta RK, et al (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine 7: 502–507

    Article  PubMed  CAS  Google Scholar 

  • Drexler W, Sattmann H, Hermann B, et al (2003) Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 121: 695–706

    Article  PubMed  Google Scholar 

  • Nassif N, Cense B, Park BH, et al (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29: 480–482

    Article  PubMed  Google Scholar 

  • Leitgeb RA, Drexler W, Unterhuber A, et al (2004) Ultrahigh resolution Fourier domain optical coherence tomography. Optics Express 12: 2156–2165

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Erfurth U, Leitgeb RA, Michels S, et al (2005) Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest Ophthalmol Vis Sci 46: 3393–3402

    Article  PubMed  Google Scholar 

  • Podoleanu AG, Seeger M, Dobre GM, et al (1998) Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. J Biomed Opt 3: 12–20

    Article  Google Scholar 

  • Podoleanu AG, Dobre GM, Cucu RG, et al (2004) Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy. J Biomed Opt 9: 86–93

    Article  PubMed  Google Scholar 

  • Hitzenberger CK, Trost P, Lo P, Zhou Q (2003) Three-dimensional imaging of the human retina by high-speed optical coherence tomography. Opt Express 11: 2753–2761

    Article  PubMed  Google Scholar 

  • Vabre L, Dubois A, Boccara AC (2002) Thermal-light full-field optical coherence tomography. Opt Lett 27: 530–532

    CAS  PubMed  Google Scholar 

  • van Velthoven ME, Verbraak FD, Yannuzzi LA, et al (2006) Imaging the Retina by en-face Optical Coherence Tomography. Retina 26: 129–136

    Article  PubMed  Google Scholar 

  • Unterhuber A, Povazay B, Bizheva K, et al (2004) Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Phys Med Biol 49: 1235–1246

    Article  PubMed  CAS  Google Scholar 

  • Ko TH, Adler DC, Fujimoto JG, et al (2004) Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Optics Express 12: 2112–2119

    Article  PubMed  Google Scholar 

  • American National Standards Institute. American National Standard for Safe Use of Lasers. ANSI, Z 136-I. 2000. New York. Ref Type: Generic

  • Sander B, Larsen M, Thrane L, et al (2005) Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol 89: 207–212

    Article  PubMed  CAS  Google Scholar 

  • Paunescu LA, Ko TH, Duker JS, et al (2006) Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh-resolution optical coherence tomography. Ophthalmology 113: 48–57

    Article  PubMed  Google Scholar 

  • Ergun E, Hermann B, Wirtitsch M, et al (2005) Assessment of central visual function in Stargardt's disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 46: 310–316

    Article  PubMed  Google Scholar 

  • Ko TH, Fujimoto JG, Duker JS, et al (2004) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 111: 2033–2043

    Article  PubMed  Google Scholar 

  • Ko TH, Fujimoto JG, Schuman JS, et al (2005) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology 112: 1922

    Article  PubMed  Google Scholar 

  • Wirtitsch MG, Ergun E, Hermann B, et al (2005) Ultrahigh resolution optical coherence tomography in macular dystrophy. Am J Ophthalmol 140: 976–983

    Article  PubMed  Google Scholar 

  • Witkin AJ, Duker JS, Ko TH, et al (2005) Ultrahigh resolution optical coherence tomography of birdshot retinochoroidopathy. Br J Ophthalmol 89: 1660–1661

    Article  PubMed  CAS  Google Scholar 

  • van Velthoven ME, de Vos K, Verbraak FD, et al (2005) Overlay of conventional angiographic and en-face OCT images enhances their interpretation. BMC Ophthalmol 5: 12

    Article  PubMed  Google Scholar 

  • van Velthoven ME, Verbraak FD, Garcia PM, et al (2005) Evaluation of central serous retinopathy with en face optical coherence tomography. Br J Ophthalmol 89: 1483–1488

    Article  PubMed  CAS  Google Scholar 

  • Pircher M, Gotzinger E, Leitgeb R, et al (2004) Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Optics Express 12: 5940–5951

    Article  PubMed  Google Scholar 

  • Paunescu LA, Schuman JS, Price LL, et al (2004) Reproducibility of Nerve Fiber Thickness, Macular Thickness, and Optic Nerve Head Measurements Using StratusOCT. Invest Ophthalmol Vis Sci 45: 1716–1724

    Article  PubMed  Google Scholar 

  • Gurses-Ozden R, Teng C, Vessani R, et al (2004) Macular and Retinal Nerve Fiber Layer Thickness Measurement Reproducibility Using Optical Coherence Tomography (OCT-3). J Glaucoma 13: 238–244

    Article  PubMed  Google Scholar 

  • Hee MR (2005) Artifacts in optical coherence tomography topographic maps. Am J Ophthalmol 139: 154–155

    Article  PubMed  Google Scholar 

  • Cucu RG, Podoleanu AG, Rogers JA, Pedro J, Rosen RB (2006) Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging. Opt Lett 31 (11): 1684–1686

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, R., van Velthoven, M., Garcia, P. et al. Ultrahigh-Resolution Combined Coronal Optical Coherence Tomography Confocal Scanning Ophthalmoscope (OCT/SLO): A pilot study. Spektrum Augenheilkd. 21, 17–28 (2007). https://doi.org/10.1007/s00717-007-0182-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00717-007-0182-4

Key words

Navigation