Skip to main content
Log in

Rapid Diffusion Weighted Imaging with Enhanced Resolution

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this paper, a new, fast compressively sensed diffusion magnetic resonance image enhancement technique is presented. This algorithm aims to overcome two major obstacles—image resolution limitation and algorithm reconstruction time efficiency-by combining a highly sparse k–q-space sampling pattern with super-resolution (SR) image enhancement. Similar to the RoSA (rotating single-shot acquisition) acceleration scheme, the presented algorithm takes advantage of simultaneous k–q-space sampling procedures being able to implement directly with no hardware modifications. The method sequentially processes compressively sensed k-space’s semi-PROPELLER blades with respect to appropriately synchronized diffusion directions. The dMR image structure is expressed as a kind of minimum-spanning tree. It fades out distortions of the image’s features. Moreover, as contrasted with numerous other super-resolution algorithms, the presented method overcomes the simplifying motion model as well as blur kernel and noise estimation issues. The simulation and experimental studies have been conducted using a dMRI scanner as well as a phantom input. Combining super-resolution with time-efficient data sets resulted in a reduction of motion artifacts, improving edge delineation as well as spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Irani, S. Peleg, CVGIP Graph. Models Image Process. 53(3), 231–239 (1991)

    Article  Google Scholar 

  2. K. Malczewski, R. Stasinski, Int. J. Funct. Inf. Personal. Med. 1(3), 311–320 (2008)

    Google Scholar 

  3. K. Malczewski, in Proceedings of The 2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV'12) Worldcomp (Las Vegas USA, 2012), pp. 766–773

  4. K. Malczewski, R. Stasinski, Stud. Comput. Intell. 231, 171–208 (2009)

    Google Scholar 

  5. A. Kennedy, O. Israel, A. Frenkel, R. Bar-Shalom, H. Azhari, IEEE Trans. Med. Imaging 25(2), 137–147 (2006)

    Article  Google Scholar 

  6. A.B. Cheryauka, J.N. Lee, A.A. Samsonov, M. Defrise, G.T. Gullberg, Magn. Reson. Imaging 22(2), 139–148 (2004)

    Article  Google Scholar 

  7. M. Engstrom, A. Nordell, B. Nordell, S. Skare, in Proceedings of the 16th Annual Meeting of ISMRM (Toronto, Ontario, Canada, 2008), pp. 415

  8. C.A. Mistretta, O. Wieben, J. Velikina, W. Block, J. Perry, Y. Wu, K. Johnson, Y. Wu, Magn. Reson. Med. 5(1), 30–40 (2006)

    Article  Google Scholar 

  9. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  10. Y. Ding, Y.C. Chung, M. Jekic, O.P. Simonetti, Magn. Reson. Imaging 65(6), 1786–1792 (2011)

    Google Scholar 

  11. T. Kuestner, C. Wurslin, S. Gatidis, P. Martirosian, K. Niolaou, N.F. Schwenzer, F. Schick, B. Yang, H. Schmidt, IEEE Trans. Med. Imaging 35(11), 2447–2458 (2016)

    Article  Google Scholar 

  12. D. Kim, H.A. Dyvorne, R. Otazo, L. Feng, D.K. Sodickson, V.S. Lee, Magn. Reson. Med. 67(4), 1054–1064 (2012)

    Article  Google Scholar 

  13. R. Otazo, D. Kim, L. Axel, D. Sodickson, Magn. Reson. Med. 64(3), 767–776 (2010)

    Article  Google Scholar 

  14. M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  15. H. Pedersen, S. Kozerke, S. Ringgaard, K. Nehrke, W. Kim, Magn. Reson. Imaging 63(3), 706–716 (2009)

    Google Scholar 

  16. M. Davenport, in IEEE Signal Processing Society Online Tutorial Library (April 12, 2013)

  17. R.L. Cook, ACM Trans. Graph. (TOG) 5(1), 51–72 (1986)

    Article  Google Scholar 

  18. D. Atkinson, D.A. Porter, D.L. Hill, F. Calamante, A. Connelly, Magn. Reson. Med. 44(1), 101–109 (2000)

    Article  Google Scholar 

  19. D. Atkinson, S. Counsell, J.V. Hajnal, P.G. Batchelor, D.L. Hill, D.J. Larkman, Magn. Reson. Med. 56(5), 1135–1139 (2006)

    Article  Google Scholar 

  20. R. Bammer, R. Stollberger, M. Augustin, J. Simbrunner, H. Offenbacher, H. Kooijman, S. Ropele, P. Kapeller, P. Wach, F. Ebner, F. Fazekas, Radiology 211(3), 799–806 (1999)

    Article  Google Scholar 

  21. J.G. Pipe, V.G. Farthing, K.P. Forbes, Magn. Reson. Med. 47(1), 42–52 (2002)

    Article  Google Scholar 

  22. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  23. L. Feng, J. Xu, K. Dan, A. Leon, S.K. Deniel, R. Otazo, in Proceedings of the 19th International Society for Magnetic Resonance in Medicine, ISMRM (Montreal, Canada, 2011), p. 4368

  24. P. Margosian, F. Schmitt, D. Purdy, Healthcare Instrum. 1, 195–197 (1986)

    Google Scholar 

  25. A. Cuppen, Magn. Reson. Med. 5(6), 526–527 (1987)

    Google Scholar 

  26. H. Jung, J.C. Ye, E.Y. Kim, Phys. Med. Biol. 52(11), 3201–3226 (2007)

    Article  Google Scholar 

  27. T.Q. Pham, M. Bezuijen, L.J. van Vliet, K. Schutte, C.L.L. Hendriks, Vis. Inf. Process. XIV 5817, 133–144 (2005)

    Article  ADS  Google Scholar 

  28. Z. He, A. Cichocki, R. Zdunek, S. Xie, IEEE Trans. Signal Process. J. 57(10), 399–404 (2009)

    ADS  Google Scholar 

  29. G. McGibney, M.R. Smith, S.T. Nichols, A. Crawley, Magn. Reson. Med. 30(1), 51–59 (1993)

    Article  Google Scholar 

  30. M.P. Heinrich, M. Jenkinson, M. Brady, J.A. Schnabel, in MICCAI 2012, part III, eds. by N. Ayache, H. Delingette, P. Golland, K. Mori (Springer, Berlin, 2012), pp. 115–122

  31. C.M. Tsai, D.G. Nishimura, Magn. Reson. Med. J. 43(3), 452–458 (2000)

    Article  Google Scholar 

  32. C. Liu, D. Sun, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 36(2), 346–360 (2014)

    Article  Google Scholar 

  33. A. Raj, G. Singh, R. Zabih, B. Kressler, Y. Wang, N. Schuff, M. Weiner, Magn. Reson. Med. 57(1), 8–21 (2007)

    Article  Google Scholar 

  34. H. Takeda, P. Milanfar, M. Protter, M. Elad, IEEE TIP 18(9), 1958–1975 (2009)

    Google Scholar 

  35. B. Lim, S. Son, H. Kim, S. Nah, K.M. Lee, in Proceedings of the Computer Vision and Pattern Recognition Workshops (Honolulu, HI, USA, 21–26 July 2017), pp. 1132–1140

  36. Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y. Fu, in Proceedings of Computer Vision –ECCV 2018 – 15th European Conference, Part VII (Munich, Germany, September 8–14, 2018), pp. 294–310

  37. Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, 8 September 2018), pp. 2472–2481

  38. T.E. Thüring, H. Eggers, H. Doneva, S. Kozerke, in Proceedings of the 26th European Society for Magnetic Resonance in Medicine and Biology, ESMRMB (Antylya, Turkey, September, 2009), p. 31

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Malczewski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malczewski, K. Rapid Diffusion Weighted Imaging with Enhanced Resolution. Appl Magn Reson 51, 221–239 (2020). https://doi.org/10.1007/s00723-019-01185-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01185-x

Navigation