Skip to main content

Advertisement

Log in

Self-Organisation of Copper Species at the Surface of Cu–TiO2 Systems During H2 Evolution Reaction: A Combined Investigation by EPR and Optical Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

High surface area TiO2 was synthetized by means of a solvothermal method and it was then used to prepare two photocatalysts based on copper-modified TiO2. Two different preparation approaches have been adopted based on the use of the same amount of Cu2O (0.5% w/w) as a reactant. The spectroscopic characterization shows that the two preparation procedures lead to distinct distributions of Cu2O and other Cu-based species in the final composite materials and that the photoactivity of the solids is strictly related to the nature of the copper species. The joint application of CW-EPR and optical spectroscopy, both employed in catalytic conditions as a sort of “operando” mode, allowed monitoring the evolution of the photocatalytic systems occurring during the H2 evolution reaction (HER). The effect of water coordination on the Cu(II) species at the surface of titania has been revealed by EPR. The successive photoreduction of the system in the early steps of the photocatalytic reaction involves the reduction of Cu2+, the formation of Ti3+ centres in the oxide matrix and that of metallic copper particles that partially inactivate the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48, 2109–2125 (2019)

    Article  Google Scholar 

  2. G.L. Chiarello, M.V. Dozzi, E. Selli, J. Energy Chem. 26, 250–258 (2017)

    Article  Google Scholar 

  3. D. Barreca, G. Carraro, V. Gombac, A. Gasparotto, C. Maccato, P. Fornasiero, E. Tondello, Adv. Funct. Mater. 21, 2611–2623 (2011)

    Article  Google Scholar 

  4. V. Polliotto, S. Livraghi, A. Krukowska, M.V. Dozzi, A. Zaleska-Medynska, E. Selli, E. Giamello, A.C.S. Appl, Mater. Interfaces 10, 27745–27756 (2018)

    Article  Google Scholar 

  5. C.Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal, Y.H. Ng, Angew. Chem. Int. Ed. 57, 13613–13617 (2018)

    Article  Google Scholar 

  6. X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao, J. Gong, Angew. Chem. Int. Ed. 55, 8840–8845 (2016)

    Article  Google Scholar 

  7. Y.-H. Zhang, Y.-L. Li, B.-B. Jiu, F.-L. Gong, J. Chen, S. Fang, H. Zhang, Nanotechnology 30, 145401 (2019)

    Article  ADS  Google Scholar 

  8. Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, P. Wang, ACS Nano 7, 1709–1717 (2013)

    Article  Google Scholar 

  9. M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Appl. Catal B: Environ. 217, 485–493 (2017)

    Article  Google Scholar 

  10. K.-H. Kim, S.-K. Ihm, J. Hazard. Mater. 146, 610–616 (2007)

    Article  Google Scholar 

  11. V. Gombac, L. Sordelli, T. Montini, J.J. Delgado, A. Adamski, G. Adami, M. Cargnello, S. Bernal, P. Fornasiero, J. Phys. Chem. A 114, 3916–3925 (2010)

    Article  Google Scholar 

  12. I. Tamiolakis, I.T. Papadas, K.C. Spyridopoulos, G. S. Armatas RSC Adv. 6, 54848 (2016)

    Article  Google Scholar 

  13. G. Li, J. Huang, Z. Deng, J. Chen, Q. Huang, Z. Liu, W. Guo, R. Cao, Cryst. Growth Des. 19, 5784–5790 (2019)

    Article  Google Scholar 

  14. S. Hejazi, S. Mohajernia, Y. Wu, P. Andryskova, G. Zoppellaro, I. Hwang, O. Tomanec, R. Zboril, P. Schmuki, Electrochem. Commun. 98, 82–86 (2019)

    Article  Google Scholar 

  15. S. Banerjee, D. Chakravorty, Europhys. Lett. 52(4), 468–473 (2000)

    Article  ADS  Google Scholar 

  16. A. Kellersohn, E. Kniizinger, W. Langel, M. Gievsig, Adv. Mater. 7, 652–655 (1995)

    Article  Google Scholar 

  17. W. Cui, W. An, L. Liu, J. Hu, Y. Lian, J. Hazard. Mater. 280, 417–427 (2014)

    Article  Google Scholar 

  18. X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, RSC Adv. 5, 23401–23409 (2015)

    Article  Google Scholar 

  19. I.L. Soroka, A. Shchukarev, M. Jonsson, N.V. Tarakina, P.A. Korzhavyi, Dalton Trans. 42, 9585–9594 (2013)

    Article  Google Scholar 

  20. M. Bennati, D.M. Murphy, in Electron paramagnetic resonance: a practitioner toolkit, ed. by M. Brustolon, E. Giamello (Wiley, USA, 2009)

    Google Scholar 

  21. G. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, J. Phys. Chem. C 112, 19040–19044 (2008)

    Article  Google Scholar 

  22. Y. Nosaka, S. Takahashi, H. Sakamoto, A.Y. Nosaka, J. Phys. Chem. C 115, 21283–21290 (2011)

    Article  Google Scholar 

  23. M.V. Dozzi, G.L. Chiarello, M. Pedroni, S. Livraghi, E. Giamello, E. Selli, Appl. Catal. B: Environ. 209, 417–428 (2017)

    Article  Google Scholar 

  24. W. Burton Lewis, M. Alei Jr., L.O. Morgan, J. Chem. Phys. 45, 4003 (1966)

    Article  ADS  Google Scholar 

  25. L. Calabrese, J. Rotilio, in Structure and Function of Haemocyanin, ed. by J.V. Bannister (Springer, Berlin, Heidelberg, New York, 1977) pp. 180–184

  26. G.T. Palomino, P. Fisicaro, S. Bordiga, A. Zecchina, E. Giamello, C. Lamberti, J. Phys. Chem. B 104, 4064–4073 (2000)

    Article  Google Scholar 

  27. J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, J. Phys. Chem. C 118, 8462–8473 (2014)

    Article  Google Scholar 

  28. F. Parveen, B. Sannakki, M.V. Mandke, H.M. Pathan, Sol. Energy Mater. Sol. Cells 144, 371–382 (2016)

    Article  Google Scholar 

  29. M. Singh, I. Sinha, M. Premkumar, A.K. Singh, R.K. Mandal, Colloids Surf. A 359(1), 88–94 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The FEG-SEM S9000 by Tescan was purchased with funds from Regione Piemonte (project POR FESR 2014-20 INFRA-P SAX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Livraghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zollo, A., Polliotto, V., Livraghi, S. et al. Self-Organisation of Copper Species at the Surface of Cu–TiO2 Systems During H2 Evolution Reaction: A Combined Investigation by EPR and Optical Spectroscopy. Appl Magn Reson 51, 1497–1513 (2020). https://doi.org/10.1007/s00723-020-01226-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01226-w

Navigation