Skip to main content
Log in

Advanced Magnetic Resonance Studies of Tetraphenylporphyrinatoiron(III) Halides

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

High-Frequency and -Field EPR (HFEPR) studies of Fe(TPP)X (X = F, Cl, Br; I, TPP2−= meso-tetraphenylporphyrinate dianion) and far-IR magnetic spectroscopic (FIRMS) studies of Fe(TPP)Br and Fe(TPP)I have been conducted to probe magnetic intra- and inter-Kramers doublet transitions in these S = 5/2 metalloporphyrin complexes, yielding zero-field splitting (ZFS) and g parameters for the complexes: Fe(TPP)F, D =  +4.67(1) cm−1, E = 0.00(1) cm−1, g = 1.97(1), g|| = 2.000(5) by HFEPR; Fe(TPP)Cl, D =  +6.458(2) cm−1, E =  +0.015(5) cm−1, E/D = 0.002, g = 2.004(3), g|| = 2.02(1) by HFEPR; Fe(TPP)Br, D = +9.03(5) cm−1, E =  +0.047(5) cm−1, E/D = 0.005, giso = 1.99(1) by HFEPR and D = +9.05 cm−1, giso = 2.0 by FIRMS; Fe(TPP)I, D =  +13.84 cm−1, E =  +0.07 cm−1, E/D = 0.005, giso = 2.0 by HFEPR and D = +13.95 cm−1, giso = 2.0 by FIRMS (the sign of E was in each case arbitrarily assigned as that of D). These results demonstrate the complementary nature of field- and frequency-domain magnetic resonance experiments in extracting with high accuracy and precision spin Hamiltonian parameters of metal complexes with S > 1/2. The spin Hamiltonian parameters obtained from these experiments have been compared with those obtained from other physical methods such as magnetic susceptibility, magnetic Mössbauer spectroscopy, inelastic neutron scattering (INS), and variable-temperature and -field magnetic circular dichroism (VT-VH MCD) experiments. INS, Mössbauer and MCD give good agreement with the results of HFEPR/FIRMS; the others not as much. The electronic structure of Fe(TPP)X (X = F, Cl, Br, I) was studied earlier by multi-reference ab initio methods to explore the origin of the large and positive D-values, reproducing the trends of D from the experiments. In the current work, a simpler model based on Ligand Field Theory (LFT) is used to explain qualitatively the trend of increasing ZFS from X = F to Cl to Br and to I as the axial ligand. Tetragonally elongated high-spin d5 systems such as Fe(TPP)X exhibit D > 0, but X plays a key role. Spin delocalization onto X means that there is a spin–orbit coupling (SOC) contribution to D from X, as opposed to none from closed-shell X. Over the range X = F, Cl, Br, I, X character increases as does the intrinsic SOC of X so that D increases correspondingly over this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2.
Fig. 3

Similar content being viewed by others

References

  1. D. Dolphin, The Porphyrins (7 volumes), (Academic Press, New York, 1978–1979)

  2. K.M. Kadish, K.M. Smith, R. Guilard, The Porphyrin Handbook (20 volumes), (Academic Press, San Diego, 2000–2003)

  3. K.M. Kadish, K.M. Smith, R. Guilard, Handbook of Porphyrin Science with Applications to Chemistry (Physics, Materials Science, Engineering, Biology and Medicine, World Scientific, Singapore, Starting in, 2010)

    Book  Google Scholar 

  4. F.A. Walker, Coord. Chem. Rev. 185–186, 471–534 (1999). https://doi.org/10.1016/S0010-8545(99)00029-6

    Article  Google Scholar 

  5. F.A. Walker, Chem. Rev. 104, 589–616 (2004). https://doi.org/10.1021/cr020634j

    Article  ADS  Google Scholar 

  6. P.L. Richards, W.S. Caughey, H. Eberspaecher, G. Feher, M. Malley, J. Chem. Phys. 47, 1187–1188 (1967). https://doi.org/10.1063/1.1712038

    Article  ADS  Google Scholar 

  7. G.C. Brackett, P.L. Richards, W.S. Caughey, J. Chem. Phys. 54, 4383–4401 (1971). https://doi.org/10.1063/1.1674688

    Article  ADS  Google Scholar 

  8. H. Uenoyama, Biochim. Biophys. Acta 230, 479–481 (1971). https://doi.org/10.1016/0304-4165(71)90176-0

    Article  Google Scholar 

  9. J.S. Lindsey, in The Porphyrin Handbook, ed. by K.M. Kadish, K.M. Smith, R. Guilard (Academic Press, San Diego, 2000), pp. 45–118

  10. C. Maricondi, W. Swift, D.K. Straub, J. Am. Chem. Soc. 91, 5205–5210 (1969). https://doi.org/10.1021/ja01047a003

    Article  Google Scholar 

  11. G.N. La Mar, G.R. Eaton, R.H. Holm, F.A. Walker, J. Am. Chem. Soc. 95, 63–75 (1973). https://doi.org/10.1021/ja00782a012

    Article  Google Scholar 

  12. M. Sato, H. Kon, Inorg. Chem. 14, 2016–2018 (1975). https://doi.org/10.1021/ic50150a060

    Article  Google Scholar 

  13. M. Sato, A.S. Rispin, H. Kon, Chem. Phys. 18, 211–224 (1976). https://doi.org/10.1016/0301-0104(76)87048-6

    Article  Google Scholar 

  14. D.V. Behere, V.R. Marathe, S. Mitra, J. Am. Chem. Soc. 99, 4149–4150 (1977). https://doi.org/10.1021/ja00454a040

    Article  Google Scholar 

  15. D.H. Dolphin, J.R. Sams, T.B. Tsin, K.L. Wong, J. Am. Chem. Soc. 100, 1711–1718 (1978). https://doi.org/10.1021/ja00474a011

    Article  Google Scholar 

  16. D.V. Behere, S.K. Date, S. Mitra, Chem. Phys. Lett. 68, 544–548 (1979). https://doi.org/10.1016/0009-2614(79)87257-7

    Article  ADS  Google Scholar 

  17. D.V. Behere, S. Mitra, Inorg. Chem. 18, 1723–1724 (1979). https://doi.org/10.1021/ic50196a066

    Article  Google Scholar 

  18. D.V. Behere, S. Mitra, Indian J. Chem. 19A, 505–507 (1980)

    Google Scholar 

  19. D.V. Behere, R. Birdy, S. Mitra, Inorg. Chem. 20, 2786–2789 (1981). https://doi.org/10.1021/ic50223a009

    Article  Google Scholar 

  20. W.R. Browett, A.F. Fucaloro, T.V. Morgan, P.J. Stephens, J. Am. Chem. Soc. 105, 1868–1872 (1983). https://doi.org/10.1021/ja00345a032

    Article  Google Scholar 

  21. H.M. Goff, E.T. Shimomura, M.A. Phillippi, Inorg. Chem. 22, 66–71 (1983). https://doi.org/10.1021/ic00143a017

    Article  Google Scholar 

  22. F. Paulat, V.K.K. Praneeth, C. Näther, N. Lehnert, Inorg. Chem. 45, 2835–2856 (2006). https://doi.org/10.1021/ic0510866

    Article  Google Scholar 

  23. S.C. Hunter, A.A. Podlesnyak, Z.-L. Xue, Inorg. Chem. 53, 1955–1961 (2014). https://doi.org/10.1021/ic4028354

    Article  Google Scholar 

  24. S.E. Stavretis, M. Atanasov, A.A. Podlesnyak, S.C. Hunter, F. Neese, Z.-L. Xue, Inorg. Chem. 54, 9790–9801 (2015). https://doi.org/10.1021/acs.inorgchem.5b01505

    Article  Google Scholar 

  25. J. Nehrkorn, J. Telser, K. Holldack, S. Stoll, A. Schnegg, J. Phys. Chem. B 119, 13816–13824 (2015). https://doi.org/10.1021/acs.jpcb.5b04156

    Article  Google Scholar 

  26. E.S. Ryland, M.-F. Lin, M.A. Verkamp, K. Zhang, K. Benke, M. Carlson, J. Vura-Weis, J. Am. Chem. Soc. 140, 4691–4696 (2018). https://doi.org/10.1021/jacs.8b01101

    Article  Google Scholar 

  27. C. Römelt, S. Ye, E. Bill, T. Weyhermüller, M. van Gastel, F. Neese, Inorg. Chem. 57, 2141–2148 (2018). https://doi.org/10.1021/acs.inorgchem.7b03018

    Article  Google Scholar 

  28. F. Paulat, N. Lehnert, Inorg. Chem. 47, 4963–4976 (2008). https://doi.org/10.1021/ic8002838

    Article  Google Scholar 

  29. S.A. Wilson, T. Kroll, R.A. Decreau, R.K. Hocking, M. Lundberg, B. Hedman, K.O. Hodgson, E.I. Solomon, J. Am. Chem. Soc. 135, 1124–1136 (2013). https://doi.org/10.1021/ja3103583

    Article  Google Scholar 

  30. R. Boča, Coord. Chem. Rev. 248, 757–815 (2004). https://doi.org/10.1016/j.ccr.2004.03.001

    Article  Google Scholar 

  31. C. Benelli, D. Gatteschi, in Introduction to Molecular Magnetism (Wiley-VCH, Weinheim, 2015) pp. 217−237

  32. E.J.L. McInnes, R.E.P. Winpenny, in Comprehensive Inorganic Chemistry II, ed. by K. Poeppelmeier (Elsevier, Amsterdam, 2013), pp. 371–395

  33. R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Nature 365, 141–143 (1993). https://doi.org/10.1038/365141a0

    Article  ADS  Google Scholar 

  34. A. Caneschi, D. Gatteschi, R. Sessoli, A.L. Barra, L.C. Brunel, M. Guillot, J. Am. Chem. Soc. 113, 5873–5874 (1991). https://doi.org/10.1021/ja00015a057

    Article  Google Scholar 

  35. Y. Zhong, M.P. Sarachik, J.R. Friedman, R.A. Robinson, T.M. Kelley, H. Nakotte, A.C. Christianson, F. Trouw, S.M.J. Aubin, D.N. Hendrickson, J. Appl. Phys. 85, 5636–5638 (1999). https://doi.org/10.1063/1.369824

    Article  ADS  Google Scholar 

  36. I. Mirebeau, M. Hennion, H. Casalta, H. Andres, H.U. Güdel, A.V. Irodova, A. Caneschi, Phys. Rev. Lett. 83, 628–631 (1999). https://doi.org/10.1103/PhysRevLett.83.628

    Article  ADS  Google Scholar 

  37. S. Hill, Polyhedron 64, 128–135 (2013). https://doi.org/10.1016/j.poly.2013.03.005

    Article  Google Scholar 

  38. A. Chiesa, T. Guidi, S. Carretta, S. Ansbro, G.A. Timco, I. Vitorica-Yrezabal, E. Garlatti, G. Amoretti, R.E.P. Winpenny, P. Santini, Phys. Rev. Lett. 119, 217202 (2017). https://doi.org/10.1103/PhysRevLett.119.217202

    Article  ADS  Google Scholar 

  39. C. Delfs, D. Gatteschi, L. Pardi, R. Sessoli, K. Wieghardt, D. Hanke, Inorg. Chem. 32, 3099–3103 (1993). https://doi.org/10.1021/ic00066a022

    Article  Google Scholar 

  40. R. Caciuffo, G. Amoretti, A. Murani, R. Sessoli, A. Caneschi, D. Gatteschi, Phys. Rev. Lett. 81, 4744–4747 (1998). https://doi.org/10.1103/PhysRevLett.81.4744

    Article  ADS  Google Scholar 

  41. D. Gatteschi, R. Sessoli, A. Cornia, Chem. Commun. 1, 725–732 (2000). https://doi.org/10.1039/A908254I

    Article  Google Scholar 

  42. A. Cornia, M. Affronte, A.G.M. Jansen, D. Gatteschi, A. Caneschi, R. Sessoli, Chem. Phys. Lett. 322, 477–482 (2000). https://doi.org/10.1016/S0009-2614(00)00464-4

    Article  ADS  Google Scholar 

  43. A.L. Barra, P. Debrunner, D. Gatteschi, C.E. Schulz, R. Sessoli, Europhys. Lett. 35, 133–138 (1996). https://doi.org/10.1209/epl/i1996-00544-3

    Article  ADS  Google Scholar 

  44. G.A. Craig, M. Murrie, Chem. Soc. Rev. 44, 2135–2147 (2015). https://doi.org/10.1039/C4CS00439F

    Article  Google Scholar 

  45. J.M. Frost, K.L.M. Harriman, M. Murugesu, Chem. Sci. 7, 2470–2491 (2016). https://doi.org/10.1039/C5SC03224E

    Article  Google Scholar 

  46. D.E. Freedman, W.H. Harman, T.D. Harris, G.J. Long, C.J. Chang, J.R. Long, J. Am. Chem. Soc. 132, 1224–1225 (2010). https://doi.org/10.1021/ja909560d

    Article  Google Scholar 

  47. W.H. Harman, T.D. Harris, D.E. Freedman, H. Fong, A. Chang, J.D. Rinehart, A. Ozarowski, M.T. Sougrati, F. Grandjean, G.J. Long, J.R. Long, C.J. Chang, J. Am. Chem. Soc. 132, 18115–18126 (2010). https://doi.org/10.1021/ja105291x

    Article  Google Scholar 

  48. S. Mossin, B.L. Tran, D. Adhikari, M. Pink, F.W. Heinemann, J. Sutter, R.K. Szilagyi, K. Meyer, D.J. Mindiola, J. Am. Chem. Soc. 134, 13651–13661 (2012). https://doi.org/10.1021/ja302660k

    Article  Google Scholar 

  49. J.M. Zadrozny, D.J. Xiao, M. Atanasov, G.J. Long, F. Grandjean, F. Neese, J.R. Long, Nat. Chem. 5, 577–581 (2013). https://doi.org/10.1038/nchem.1630

    Article  Google Scholar 

  50. P.P. Samuel, K.C. Mondal, N. Amin, H.W. Roesky, E. Carl, R. Neufeld, D. Stalke, S. Demeshko, F. Meyer, L. Ungur, L.F. Chibotaru, J. Christian, V. Ramachandran, J. van Tol, N.S. Dalal, J. Am. Chem. Soc. 136, 11964–11971 (2014). https://doi.org/10.1021/ja5043116

    Article  Google Scholar 

  51. C.G. Werncke, M.-A. Bouammali, J. Baumard, N. Suaud, C. Martins, N. Guihéry, L. Vendier, J. Zheng, J.-B. Sortais, C. Darcel, S. Sabo-Etienne, J.-P. Sutter, S. Bontemps, C. Pichon, Inorg. Chem. 55, 10968–10977 (2016). https://doi.org/10.1021/acs.inorgchem.6b01512

    Article  Google Scholar 

  52. X. Feng, S.J. Hwang, J.-L. Liu, Y.-C. Chen, M.-L. Tong, D.G. Nocera, J. Am. Chem. Soc. 139, 16474–16477 (2017). https://doi.org/10.1021/jacs.7b09699

    Article  Google Scholar 

  53. J. Xiang, J.-J. Liu, X.-X. Chen, L.-H. Jia, F. Yu, B.-W. Wang, S. Gao, T.-C. Lau, Chem. Commun. 53, 1474–1477 (2017). https://doi.org/10.1039/C6CC09801K

    Article  Google Scholar 

  54. U. Chakraborty, S. Demeshko, F. Meyer, C. Rebreyend, B. de Bruin, M. Atanasov, F. Neese, B. Mühldorf, R. Wolf, Angew. Chem. Int. Ed. 56, 7995–7999 (2017). https://doi.org/10.1002/anie.201702454

    Article  Google Scholar 

  55. C.G. Werncke, L. Vendier, S. Sabo-Etienne, J.-P. Sutter, C. Pichon, S. Bontemps, Eur. J. Inorg. Chem. 1, 1041–1406 (2017). https://doi.org/10.1002/ejic.201601461

    Article  Google Scholar 

  56. M. Ding, A.K. Hickey, M. Pink, J. Telser, D.L. Tierney, M. Amoza, M. Rouzières, T.J. Ozumerzifon, W.A. Hoffert, M.P. Shores, E. Ruiz, R. Clérac, J.M. Smith, Chem. Eur. J. 25, 10625–10632 (2019). https://doi.org/10.1002/chem.201900799

    Article  Google Scholar 

  57. Y.-F. Deng, T. Han, Z. Wang, Z. Ouyang, B. Yin, Z. Zheng, J. Krzystek, Y.-Z. Zheng, Chem. Commun. 51, 17688–17691 (2015). https://doi.org/10.1039/C5CC07025B

    Article  Google Scholar 

  58. J. Vallejo, A. Pascual-Álvarez, J. Cano, I. Castro, M. Julve, F. Lloret, J. Krzystek, G. De Munno, D. Armentano, W. Wernsdorfer, R. Ruiz-García, E. Pardo, Angew. Chem. Int. Ed. 52, 14075–14079 (2013). https://doi.org/10.1002/anie.201308047

    Article  Google Scholar 

  59. A. Pascual-Álvarez, J. Vallejo, E. Pardo, M. Julve, F. Lloret, J. Krzystek, D. Armentano, W. Wernsdorfer, J. Cano, Chem. Eur. J. 21, 17299–17307 (2015). https://doi.org/10.1002/chem.201502637

    Article  Google Scholar 

  60. L. Chen, J. Wang, Y.-Z. Liu, Y. Song, X.-T. Chen, Y.-Q. Zhang, Z.-L. Xue, Eur. J. Inorg. Chem. 1, 271–278 (2015). https://doi.org/10.1002/ejic.201402964

    Article  Google Scholar 

  61. J.M. Zadrozny, J. Liu, N.A. Piro, C.J. Chang, S. Hill, J.R. Long, Chem. Commun. 48, 3927–3929 (2012). https://doi.org/10.1039/C2CC16430B

    Article  Google Scholar 

  62. J.M. Zadrozny, J. Telser, J.R. Long, Polyhedron 64, 209–217 (2013). https://doi.org/10.1016/j.poly.2013.04.008

    Article  Google Scholar 

  63. L. Chen, J. Wang, J.-M. Wei, W. Wernsdorfer, X.-T. Chen, Y.-Q. Zhang, Y. Song, Z.-L. Xue, J. Am. Chem. Soc. 136, 12213–12216 (2014). https://doi.org/10.1021/ja5051605

    Article  Google Scholar 

  64. D. Schweinfurth, J. Krzystek, M. Atanasov, J. Klein, S. Hohloch, J. Telser, S. Demeshko, F. Meyer, F. Neese, B. Sarkar, Inorg. Chem. 56, 5253–5265 (2017). https://doi.org/10.1021/acs.inorgchem.7b00371

    Article  Google Scholar 

  65. H.-H. Cui, F. Lu, X.-T. Chen, Y.-Q. Zhang, W. Tong, Z.-L. Xue, Inorg. Chem. 58, 12555–12564 (2019). https://doi.org/10.1021/acs.inorgchem.9b01175

    Article  Google Scholar 

  66. J. Vallejo, M. Viciano-Chumillas, F. Lloret, M. Julve, I. Castro, J. Krzystek, M. Ozerov, D. Armentano, G. De Munno, J. Cano, Inorg. Chem. 58, 15726–15740 (2019). https://doi.org/10.1021/acs.inorgchem.9b01719

    Article  Google Scholar 

  67. K.E.R. Marriott, L. Bhaskaran, C. Wilson, M. Medarde, S.T. Ochsenbein, S. Hill, M. Murrie, Chem. Sci. 6, 6823–6828 (2015). https://doi.org/10.1039/C5SC02854J

    Article  Google Scholar 

  68. G.A. Craig, A. Sarkar, C.H. Woodall, M.A. Hay, K.E.R. Marriott, K.V. Kamenev, S.A. Moggach, E.K. Brechin, S. Parsons, G. Rajaraman, M. Murrie, Chem. Sci. 9, 1551–1559 (2018). https://doi.org/10.1039/C7SC04460G

    Article  Google Scholar 

  69. H.-H. Cui, W. Lv, W. Tong, X.-T. Chen, Z.-L. Xue, Eur. J. Inorg. Chem. 1, 4653–4659 (2019). https://doi.org/10.1002/ejic.201900942

    Article  Google Scholar 

  70. L. Wang, M. Zlatar, F. Vlahović, S. Demeshko, C. Philouze, F. Molton, M. Gennari, F. Meyer, C. Duboc, M. Gruden, Chem. Eur. J. 24, 5091–5094 (2018). https://doi.org/10.1002/chem.201705989

    Article  Google Scholar 

  71. J. Krzystek, J. Telser, Dalton Trans. 45, 16751–16763 (2016). https://doi.org/10.1039/C6DT01754A

    Article  Google Scholar 

  72. A.D. Adler, F.R. Longo, F. Kampas, J. Kim, J. Inorg. Nucl. Chem. 32, 2443–2445 (1970). https://doi.org/10.1016/0022-1902(70)80535-8

    Article  Google Scholar 

  73. A.K. Hassan, L.A. Pardi, J. Krzystek, A. Sienkiewicz, P. Goy, M. Rohrer, L.C. Brunel, J. Magn. Reson. 142, 300–312 (2000). https://doi.org/10.1006/jmre.1999.1952

    Article  ADS  Google Scholar 

  74. S.A. Zvyagin, J. Krzystek, P.H.M. van Loosdrecht, G. Dhalenne, A. Revcolevschi, Phys. B 346–347, 1–5 (2004). https://doi.org/10.1016/j.physb.2004.01.009

    Article  ADS  Google Scholar 

  75. J. Telser, eMagRes 6, 207–234 (2017). https://doi.org/10.1002/9780470034590.emrstm1501

  76. G. Aromí, J. Telser, A. Ozarowski, L.-C. Brunel, H.-M. Stoeckli-Evans, J. Krzystek, Inorg. Chem. 44, 187–196 (2005). https://doi.org/10.1021/ic049180u

    Article  Google Scholar 

  77. D.G. McGavin, W.C. Tennant, J.A. Weil, J. Magn. Reson. 87, 92–109 (1990). https://doi.org/10.1016/0022-2364(90)90088-Q

    Article  ADS  Google Scholar 

  78. J. Krzystek, S.A. Zvyagin, A. Ozarowski, S. Trofimenko, J. Telser, J. Magn. Reson. 178, 174–183 (2006). https://doi.org/10.1016/j.jmr.2005.09.007

    Article  ADS  Google Scholar 

  79. K. Ray, A. Begum, T. Weyhermüller, S. Piligkos, J. van Slageren, F. Neese, K. Wieghardt, J. Am. Chem. Soc. 127, 4403–4415 (2005). https://doi.org/10.1021/ja042803i

    Article  Google Scholar 

  80. S.-D. Jiang, D. Maganas, N. Levesanos, E. Ferentinos, S. Haas, K. Thirunavukkuarasu, J. Krzystek, M. Dressel, L. Bogani, F. Neese, P. Kyritsis, J. Am. Chem. Soc. 137, 12923–12928 (2015). https://doi.org/10.1021/jacs.5b06716

    Article  Google Scholar 

  81. Y. Rechkemmer, J.E. Fischer, R. Marx, M. Dörfel, P. Neugebauer, S. Horvath, M. Gysler, T. Brock-Nannestad, W. Frey, M.F. Reid, J. van Slageren, J. Am. Chem. Soc. 137, 13114–13120 (2015). https://doi.org/10.1021/jacs.5b08344

    Article  Google Scholar 

  82. Y. Rechkemmer, F.D. Breitgoff, M. van der Meer, M. Atanasov, M. Hakl, M. Orlita, P. Neugebauer, F. Neese, B. Sarkar, J. van Slageren, Nat. Commun. 7, 10467 (2016). https://doi.org/10.1038/ncomms10467

    Article  ADS  Google Scholar 

  83. D.H. Moseley, S.E. Stavretis, Z. Zhu, M. Guo, C.M. Brown, M. Ozerov, Y. Cheng, L.L. Daemen, R. Richardson, G. Knight, K. Thirunavukkuarasu, A.J. Ramirez-Cuesta, J. Tang, Z.-L. Xue, Inorg. Chem. 59, 5218–5230 (2020). https://doi.org/10.1021/acs.inorgchem.0c00523

    Article  Google Scholar 

  84. S.E. Stavretis, D.H. Moseley, F. Fei, H.-H. Cui, Y. Cheng, A.A. Podlesnyak, X. Wang, L.L. Daemen, C.M. Hoffmann, M. Ozerov, Z. Lu, K. Thirunavukkuarasu, D. Smirnov, T. Chang, Y.-S. Chen, A.J. Ramirez-Cuesta, X.-T. Chen, Z.-L. Xue, Chem. Eur. J. 25, 15846–15857 (2019). https://doi.org/10.1002/chem.201903635

  85. D.H. Moseley, S.E. Stavretis, K. Thirunavukkuarasu, M. Ozerov, Y. Cheng, L.L. Daemen, J. Ludwig, Z. Lu, D. Smirnov, C.M. Brown, A. Pandey, A.J. Ramirez-Cuesta, A.C. Lamb, M. Atanasov, E. Bill, F. Neese, Z.-L. Xue, Nat. Commun. 9, 2572 (2018). https://doi.org/10.1038/s41467-018-04896-0

    Article  ADS  Google Scholar 

  86. C.N. Widener, A.N. Bone, M. Ozerov, R. Richardson, Z. Lu, K. Thirunavukkuarasu, D. Smirnov, X.-T. Chen, Z.-L. Xue, Chin. J. Inorg. Chem. 35, 1149–1156 (2020). https://doi.org/10.11862/CJIC.2020.126

  87. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006). https://doi.org/10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  88. J. Nehrkorn, K. Holldack, R. Bittl, A. Schnegg, J. Magn. Reson. 280, 10–19 (2017). https://doi.org/10.1016/j.jmr.2017.04.001

    Article  ADS  Google Scholar 

  89. J. Lu, I.O. Ozel, C.A. Belvin, X. Li, G. Skorupskii, L. Sun, B.K. Ofori-Okai, M. Dincă, N. Gedik, K.A. Nelson, Chem. Sci. 8, 7312–7323 (2017). https://doi.org/10.1039/C7SC00830A

    Article  Google Scholar 

  90. G.C. Brackett, Ph.D. Dissertation, University of California, 1970. https://escholarship.org/content/qt2s50c1gm/qt2s50c1gm.pdf

  91. A. Furrer, J. Mesot, T. Strässle, Neutron Scattering in Condensed Matter Physics (World Scientific, Singapore, 2009)

  92. A. Furrer, O. Waldmann, Rev. Mod. Phys. 85, 367–420 (2013). https://doi.org/10.1103/RevModPhys.85.367

    Article  ADS  Google Scholar 

  93. J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, B.S. Tsukerblat, Inorg. Chem. 38, 6081–6088 (1999). https://doi.org/10.1021/ic990915i

    Article  Google Scholar 

  94. M.A. Dunstan, R.A. Mole, C. Boskovic, Eur. J. Inorg. Chem. 1, 1090–1105 (2019). https://doi.org/10.1002/ejic.201801306

    Article  Google Scholar 

  95. Z.-L. Xue, A.J. Ramirez-Cuesta, C.M. Brown, S. Calder, H. Cao, B.C. Chakoumakos, L.L. Daemen, A. Huq, A.I. Kolesnikov, E. Mamontov, A.A. Podlesnyak, X. Wang, Eur. J. Inorg. Chem. 1, 1065–1089 (2019). https://doi.org/10.1002/ejic.201801076

    Article  Google Scholar 

  96. H. Andres, R. Basler, H.-U. Güdel, G. Aromí, G. Christou, H. Büttner, B. Rufflé, J. Am. Chem. Soc. 122, 12469–12477 (2000). https://doi.org/10.1021/ja0009424

    Article  Google Scholar 

  97. G. Carver, P.L.W. Tregenna-Piggott, A.-L. Barra, A. Neels, J.A. Stride, Inorg. Chem. 42, 5771–5777 (2003). https://doi.org/10.1021/ic034110t

    Article  Google Scholar 

  98. R. Basler, A. Sieber, G. Chaboussant, H.U. Güdel, N.E. Chakov, M. Soler, G. Christou, A. Desmedt, R. Lechner, Inorg. Chem. 44, 649–653 (2005). https://doi.org/10.1021/ic048931p

    Article  Google Scholar 

  99. K.R. Kittilstved, L.A. Sorgho, N. Amstutz, P.L.W. Tregenna-Piggott, A. Hauser, Inorg. Chem. 48, 7750–7764 (2009). https://doi.org/10.1021/ic900613p

    Article  Google Scholar 

  100. J. Dreiser, O. Waldmann, C. Dobe, G. Carver, S.T. Ochsenbein, A. Sieber, H.U. Güdel, J. van Duijn, J. Taylor, A. Podlesnyak, Phys. Rev. B 81, 024408 (2010). https://doi.org/10.1103/PhysRevB.81.024408

    Article  ADS  Google Scholar 

  101. C.H. Wang, M.D. Lumsden, R.S. Fishman, G. Ehlers, T. Hong, W. Tian, H. Cao, A. Podlesnyak, C. Dunmars, J.A. Schlueter, J.L. Manson, A.D. Christianson, Phys. Rev. B 86, 064439 (2012). https://doi.org/10.1103/PhysRevB.86.064439

    Article  ADS  Google Scholar 

  102. M.J. Giansiracusa, M. Vonci, W. Van den Heuvel, R.W. Gable, B. Moubaraki, K.S. Murray, D. Yu, R.A. Mole, A. Soncini, C. Boskovic, Inorg. Chem. 55, 5201–5214 (2016). https://doi.org/10.1021/acs.inorgchem.6b00108

    Article  Google Scholar 

  103. L. Chen, H.-H. Cui, S.E. Stavretis, S.C. Hunter, Y.-Q. Zhang, X.-T. Chen, Y.-C. Sun, Z. Wang, Y. Song, A.A. Podlesnyak, Z.-W. Ouyang, Z.-L. Xue, Inorg. Chem. 55, 12603–12617 (2016). https://doi.org/10.1021/acs.inorgchem.6b01544

    Article  Google Scholar 

  104. S.E. Stavretis, Y. Cheng, L.L. Daemen, C.M. Brown, D.H. Moseley, E. Bill, M. Atanasov, A.J. Ramirez-Cuesta, F. Neese, Z.-L. Xue, Eur. J. Inorg. Chem. 1, 1119–1127 (2019). https://doi.org/10.1002/ejic.201801088

    Article  Google Scholar 

  105. A.N. Bone, S.E. Stavretis, J. Krzystek, Z. Liu, Q. Chen, Z. Gai, X. Wang, C.A. Steren, X.B. Powers, A.A. Podlesnyak, X.-T. Chen, J. Telser, H. Zhou, Z.-L. Xue, Polyhedron 184, 114488 (2020). https://doi.org/10.1016/j.poly.2020.114488

    Article  Google Scholar 

  106. E. Colacio, J. Ruiz, E. Ruiz, E. Cremades, J. Krzystek, S. Carretta, J. Cano, T. Guidi, W. Wernsdorfer, E.K. Brechin, Angew. Chem. Int. Ed. 52, 9130–9134 (2013). https://doi.org/10.1002/anie.201304386

    Article  Google Scholar 

  107. J. Dreiser, A. Schnegg, K. Holldack, K.S. Pedersen, M. Schau-Magnussen, J. Nehrkorn, P. Tregenna-Piggott, H. Mutka, H. Weihe, J. Bendix, O. Waldmann, Chem. Eur. J. 17, 7492–7498 (2011). https://doi.org/10.1002/chem.201100581

    Article  Google Scholar 

  108. D. Pinkowicz, H.I. Southerland, C. Avendaño, A. Prosvirin, C. Sanders, W. Wernsdorfer, K.S. Pedersen, J. Dreiser, R. Clérac, J. Nehrkorn, G.G. Simeoni, A. Schnegg, K. Holldack, K.R. Dunbar, J. Am. Chem. Soc. 137, 14406–14422 (2015). https://doi.org/10.1021/jacs.5b09378

    Article  Google Scholar 

  109. R. Basler, P.L.W. Tregenna-Piggott, H. Andres, C. Dobe, H.-U. Güdel, S. Janssen, G.J. McIntyre, J. Am. Chem. Soc. 123, 3377–3378 (2001). https://doi.org/10.1021/ja003801a

    Article  Google Scholar 

  110. A. Sieber, C. Boskovic, R. Bircher, O. Waldmann, S.T. Ochsenbein, G. Chaboussant, H.U. Güdel, N. Kirchner, J. van Slageren, W. Wernsdorfer, A. Neels, H. Stoeckli-Evans, S. Janssen, F. Juranyi, H. Mutka, Inorg. Chem. 44, 4315–4325 (2005). https://doi.org/10.1021/ic050134j

    Article  Google Scholar 

  111. M. Sigrist, P.L.W. Tregenna-Piggott, K.S. Pedersen, M.A. Sørensen, A.-L. Barra, J. Hauser, S.-X. Liu, S. Decurtins, H. Mutka, J. Bendix, Eur. J. Inorg. Chem. 1, 2683–2689 (2015). https://doi.org/10.1002/ejic.201500084

    Article  Google Scholar 

  112. R. Bircher, G. Chaboussant, S.T. Ochsenbein, F. Fernandez-Alonso, H.U. Güdel, E.K. Brechin, Polyhedron 24, 2455–2458 (2005). https://doi.org/10.1016/j.poly.2005.03.062

    Article  Google Scholar 

  113. S. Ansbro, E. Moreno-Pineda, W. Yu, J. Ollivier, H. Mutka, M. Ruben, A. Chiesa, Dalton Trans. 47, 11953–11959 (2018). https://doi.org/10.1039/C8DT02570C

    Article  Google Scholar 

  114. M.L. Baker, T. Guidi, S. Carretta, J. Ollivier, H. Mutka, H.U. Güdel, G.A. Timco, E.J.L. McInnes, G. Amoretti, R.E.P. Winpenny, P. Santini, Nat. Phys. 8, 906–911 (2012). https://doi.org/10.1038/nphys2431

    Article  Google Scholar 

  115. E. Garlatti, T. Guidi, S. Ansbro, P. Santini, G. Amoretti, J. Ollivier, H. Mutka, G. Timco, I.J. Vitorica-Yrezabal, G.F.S. Whitehead, R.E.P. Winpenny, S. Carretta, Nat. Commun. 8, 14543 (2017). https://doi.org/10.1038/ncomms14543

    Article  ADS  Google Scholar 

  116. E. Garlatti, A. Chiesa, T. Guidi, G. Amoretti, P. Santini, S. Carretta, Eur. J. Inorg. Chem. 1, 1106–1118 (2019). https://doi.org/10.1002/ejic.201801050

    Article  Google Scholar 

  117. S. Gómez-Coca, A. Urtizberea, E. Cremades, P.J. Alonso, A. Camón, E. Ruiz, F. Luis, Nat. Commun. 5, 4300 (2014). https://doi.org/10.1038/ncomms5300

    Article  ADS  Google Scholar 

  118. G.J. Long, Mössbauer Spectroscopy Applied to Inorganic Chemistry (Springer, Heidelberg, 1984)

  119. D. Gatteschi, L. Sorace, J. Solid State Chem. 159, 253–261 (2001). https://doi.org/10.1006/jssc.2001.9154

    Article  ADS  Google Scholar 

  120. J. Krzystek, A. Ozarowski, J. Telser, Coord. Chem. Rev. 250, 2308–2324 (2006). https://doi.org/10.1016/j.ccr.2006.03.016

    Article  Google Scholar 

  121. D. Gatteschi, L. Sorace, R. Sessoli, A.L. Barra, Appl. Magn. Reson. 21, 299–310 (2001). https://doi.org/10.1007/BF03162409

    Article  Google Scholar 

  122. S. Mossin, H. Weihe, A.-L. Barra, J. Am. Chem. Soc. 124, 8764–8765 (2002). https://doi.org/10.1021/ja012574p

    Article  Google Scholar 

  123. S. Shova, A. Vlad, M. Cazacu, J. Krzystek, L. Bucinsky, M. Breza, D. Darvasiová, P. Rapta, J. Cano, J. Telser, V.B. Arion, Dalton Trans. 46, 11817–11829 and references therein by C. Duboc and coworkers (2017). https://doi.org/10.1039/C7DT01809F.

  124. J. Krzystek, J. Telser, L.A. Pardi, D.P. Goldberg, B.M. Hoffman, L.-C. Brunel, Inorg. Chem. 38, 6121–6129 (1999). https://doi.org/10.1021/ic9901970

    Article  Google Scholar 

  125. D.S. McClure, Solid State Phys. 9, 399–525 (1959). https://doi.org/10.1016/S0081-1947(08)60569-X

  126. NIST, NIST Atomic Spectra Database Levels Form (https://physics.nist.gov/PhysRefData/ASD/levels_form.html).

Download references

Acknowledgements

Besides the sources of funding listed below J.K. thanks the HLD for financial support of his sabbatical stay in Dresden. Dr. A. Ozarowski (NHMFL) is acknowledged for his EPR simulation and fit program SPIN as well as help with some simulations. We thank Dr. Rodolphe Clérac, CNRS Centre de Recherche Paul Pascal (CRPP), Pessac, France for helpful comments about magnetometry.

Funding

US National Science Foundation (NSF, CHE-1633870 and CHE-1900296 to Z.-L.X.) and a Shull Wollan Center Graduate Research Fellowship (S.E.S) are acknowledged for partial support of the research. Part of this work was performed at the National High Magnetic Field Laboratory which is supported by NSF Cooperative Agreement No. DMR-1644779 and the State of Florida, and at the Dresden High Magnetic Field Laboratory (HLD) at Helmholtz-Zentrum Dresden-Rossendorf, Germany, member of the European Magnetic Field Laboratory (EMFL). This work was also funded by Deutsche Forschungsgemeinschaft (DFG, Germany) through the projects ZV6/2-2 and the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter—ct.qmat (EXC 2147, project No. 390858490).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Krzystek or Zi-Ling Xue.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Dedicated to Prof. Dante Gatteschi, Università degli Studi di Firenze, on the occasion of his birthday and in recognition of his contribution to the fields of molecular magnetism and magnetic resonance, and many years of service to the respective communities.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tin, P., Stavretis, S.E., Ozerov, M. et al. Advanced Magnetic Resonance Studies of Tetraphenylporphyrinatoiron(III) Halides. Appl Magn Reson 51, 1411–1432 (2020). https://doi.org/10.1007/s00723-020-01236-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01236-8

Navigation