Skip to main content

Advertisement

Log in

Polyvinyl alcohol nanofiber formulation of the designer antimicrobial peptide APO sterilizes Acinetobacter baumannii-infected skin wounds in mice

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Native and designer cationic antimicrobial peptides are increasingly acknowledged as host defense molecules rather than true antimicrobials. Due to their ability to activate the innate immune system, these structures are used to treat uninfected and bacterially-infected wounds, including those harboring Acinetobacter baumannii. Previously we documented that when administered intramuscularly or topically in liquid formulations, the proline-rich host defense peptide dimer A3-APO accelerates uninfected wound re-epithelization and eliminates systemic and local A. baumannii, methicillin-resistant Staphylococcus aureus and other pathogen load from infected lesions better than conventional antibiotics. In the current study we sought to produce and characterize a novel delivery system, suitable for immediate and convenient application in non-hospital environments. The APO monomer was incorporated into polyvinyl alcohol nanofibers and the complex was polymerized into a solid patch dressing. Mice were subjected to skin abrasion where the wounds were either left uninfected or were inoculated with a near lethal dose of multidrug resistant A. baumannii strain. Analyzed after 3 days, APO monomer-containing patches improved wound appearance significantly better than polymer patches without antibiotics. When compared to colistin, the APO patches accelerated wound healing, and statistically significantly reduced wound size and wound bacterial load. The in vivo antimicrobial effect was more extensive than after intramuscular administration of the peptide drug, by using only one tenth of the active pharmaceutical ingredient. These data suggest that the APO monomer-impregnated nanofiber dressing can be developed as an economical first-line treatment option to skin injuries in general and battlefield burn and blast injuries in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

API:

Active pharmaceutical ingredient

APO:

All peptides optimized, name of designer antimicrobial peptide

ESBL:

Extended β-lactamase expressing

MBL:

Metallo-β-lactamase producing

MDR:

Multidrug-resistant

PVA:

Polyvinyl alcohol

UPLC:

Ultra performance liquid chromatography

References

  • Ackermann M, Wolloscheck T, Wellmann A, Li VW, Li WW, Konerding MA (2011) Priming with a combination of proangiogenic growth factors improves wound healing in normoglycemic mice. Int J Mol Med 27:647–653

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown KL, Hancock REW (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30

    Article  PubMed  CAS  Google Scholar 

  • Capparelli R, De Chiara F, Nocerino N, Montella RC, Iannaccone M, Fulgione A, Romanelli A, Avitabile C, Blaiotta G, Capuano F (2012) New perspectives for natural antimicrobial peptides: application as anti-inflammatory drugs in a murine model. BMC Immunol 13:61

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chaly YV, Paleolog EM, Kolesnikova TS, Tikhonov II, Petratchenko EV, Voitenok NN (2000) Neutrophil α-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw 11:257–266

    PubMed  CAS  Google Scholar 

  • Crane DP, Gromov K, Li D, Soballe K, Wahnes C, Buchner H, Hilton MJ, O’Keefe RJ, Murray CK, Schwarz EM (2009) Efficacy of colistin-impregnated beads to prevent multidrug-resistant A. baumannii implant-associated osteomyelitis. J Orthop Res 27:1008–1015

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Delorme E (1915) War surgery (English translation H Meric, HK Lewis, 136 Gower Street, London, UK)

  • Gao Y, Truong B, Zhu Y, Kyratzys IL (2014) Electrospun antibacterial nanofibers: production, activity and in vivo applications. J Appl Polym Sci 131:40797. doi:10.1002/app.40797

    Google Scholar 

  • Gatti JW, Smithgall MC, Paranjape SM, Rolfes RJ, Paranjape M (2013) Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomed Microdevices 15:887–893

    Article  PubMed  CAS  Google Scholar 

  • Govil SK, Flynn AJ, Flynn GL, Ackermann C (2003) Relationship of hairless mouse skin surface temperature to wound severity and maturation time. Skin Pharmacol Appl Skin Physiol 16:313–323

    Article  PubMed  CAS  Google Scholar 

  • Heunis TD, Dicks LM (2010) Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol 510682

  • Heunis TD, Smith C, Dicks LM (2013) Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 57:3928–3935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hilchie AL, Wuerth K, Hancock RE (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768

    Article  PubMed  CAS  Google Scholar 

  • Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY (2013) Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 34:10319–10327

    Article  PubMed  CAS  Google Scholar 

  • Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9:102–111

    Article  PubMed  CAS  Google Scholar 

  • Jabaley ME, Peterson HD (1973) Early treatment of war wounds of the hand and forearm in Vietnam. Ann Surg 177:167–173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim JD, Lee YW, Park MK, Shin JR, Lim KJ, Cho JH, Kim SC (2014) Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids 46:2333–2343

    Article  PubMed  CAS  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee PH, Rudisill JA, Lin KH, Zhang L, Harris SM, Falla TJ, Gallo RL (2004) HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair. Wound Repair Regen 12:351–358

    Article  PubMed  Google Scholar 

  • Li W, Tailhades J, O’Brien-Simpson NM, Separovic F, Otvos L Jr, Hossain MA, Wade JD (2014) Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids 46:2287–2294

    Article  PubMed  CAS  Google Scholar 

  • Lin B, Zhang C, Xiao X (2005) Toxicity, bioavailability and pharmacokinetics of a newly formulated colistin sulfate solution. J Vet Pharmacol Ther 8:349–354

    Article  Google Scholar 

  • Liu X, Lin T, Gao Y, Xu Z, Huang C, Yao G, Jiang L, Tang Y, Wang X (2012) Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J Biomed Mater res Part B Appl Biomater 100B:1556

    Article  CAS  Google Scholar 

  • Murray CK, Wilkins K, Molter NC, Yun HC, Dubick MA, Spott MA, Jenkins D, Eastridge B, Holcomb JB, Blackbourne LH, Hospenthal DR (2009) Infections in combat casualties during Operations Iraqi and Enduring Freedom. J Trauma 66:S138–S144

    Article  PubMed  Google Scholar 

  • Ostorhazi E, Rozgonyi F, Sztodola A, Harmos F, Kovalszky I, Szabo D, Knappe D, Hoffmann R, Cassone M, Wade JD, Bonomo RA, Otvos L Jr (2010) Preclinical advantages of intramuscularly administered peptide A3-APO over existing therapies in Acinetobacter baumannii wound infections. J Antimicrob Chemother 65:2416–2422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ostorhazi E, Holub MC, Rozgonyi F, Harmos F, Cassone M, Wade JD, Otvos L Jr (2011) Broad-spectrum antimicrobial efficacy of peptide A3-APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int J Antimicrob Agents 37:480–484

    Article  PubMed  CAS  Google Scholar 

  • Ostorhazi E, Voros E, Nemes-Nikodem E, Pinter D, Sillo P, Mayer B, Wade JD, Otvos L Jr (2013) Rapid systemic and local treatments with the antibacterial peptide dimer A3-APO and its monomeric metabolite eliminate bacteria and reduce inflammation in intradermal lesions infected with Propionibacterium acnes and methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 42:537–543

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr, Ostorhazi E (2015) Therapeutic utility of antibacterial peptides in wound healing. Expert Rev Anti Infect Ther 13:871–881

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr, Wade JD (2014) Current challenges in peptide-based drug discovery. Front Chem 2:62

    PubMed  PubMed Central  Google Scholar 

  • Otvos L Jr, Flick-Smith H, Fox M, Dawson RM, Wade JD (2014) The designer proline-rich antibacterial peptide A3-APO prevents Bacillus anthracis mortality by deactivating bacterial toxins. Protein Pept Lett 21:374–381

    Article  PubMed  CAS  Google Scholar 

  • Popovic S, Urban E, Lukic M, Conlon JM (2012) Peptides with antimicrobial and anti-inflammatory activities that have therapeutic potential for treatment of acne vulgaris. Peptides 34:275–282

    Article  PubMed  CAS  Google Scholar 

  • Ramos R, Silva JP, Rodrigues AC, Costa R, Guardão L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M (2011) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32:1469–1476

    Article  PubMed  CAS  Google Scholar 

  • Sebe I, Kallai-Szabo B, Zelko R, Szabo D (2015) Polymers and formulation strategies of nanofibrous systems for drug delivery application and tissue engineering. Curr Med Chem 22:604–617

    Article  PubMed  CAS  Google Scholar 

  • Sobczak M, Debek C, Oledzka E, Kozlowski R (2013) Polymeric systems of antimicrobial peptides—strategies and potential applications. Molecules 18:14122–14137

    Article  PubMed  CAS  Google Scholar 

  • Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176(2A Suppl):26S–38S

    Article  PubMed  CAS  Google Scholar 

  • Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T (2008) Host defense peptides in wound healing. Mol Med 14:528–537  

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Steinstraesser L, Hirsch T, Schulte M, Kueckelhaus M, Jacobsen F, Mersch EA, Stricker I, Afacan N, Jenssen H, Hancock RE, Kindrachuk J (2012) Innate defense regulator peptide 1018 in wound healing and wound infection.  PLoS ONE 7(8):e39373. doi:10.1371/journal.pone.0039373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Szabo D, Ostorhazi E, Binas A, Rozgonyi F, Kocsis B, Cassone M, Wade JD, Nolte O, Otvos L Jr (2010) The designer proline-rich antibacterial peptide A3-APO is effective against systemic Escherichia coli infections in different mouse models. Int J Antimicrob Agents 35:357–361

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Liu H, Gao C, Mu L, Yang S, Rong M, Zhang Z, Liu J, Ding Q, Lai R (2014) A small peptide with potential ability to promote wound healing. PLoS One 9:e92082

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedstone AE, Tedoldi B, Ilic V, Williamson DH (1989) Polymyxin B diminishes blood flow to brown adipose tissue and lactating mammary gland in the rat. Possible mechanism of its action to decrease the stimulation of lipogenesis on refeeding. Biochem J 261:445–450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tomioka H, Nakagami H, Tenma A, Saito Y, Kaga T, Kanamori T, Tamura N, Tomono K, Kaneda Y, Morishita R (2014) Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One 9:e92597

    Article  PubMed  PubMed Central  Google Scholar 

  • Warn PA, Brampton MW, Sharp A, Morrissey G, Steel N, Denning DW, Priest T (2003) Infrared body temperature measurement of mice as an early predictor of death in experimental fungal infections. Lab Anim 37:126–131

    Article  PubMed  CAS  Google Scholar 

  • Welkos S, Cote CK, Hahn U, Shastak O, Jedermann J, Bozue J, Jung G, Ruchala P, Pratikhya P, Tang T, Lehrer RI, Beyer W (2011) Humanized θ-defensins (retrocyclins) enhance macrophage performance and protect mice from experimental anthrax infections. Antimicrob Agents Chemother 55:4238–4250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Part of the work reported was supported by an ARC Discovery Project Grant (DP150103522) to JDW who is also an NHMRC (Australia) Principal Research Fellow and Akhter Hossain. WL is the recipient of an MIRS PhD award. Research at the FINMH was also supported by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Otvos Jr..

Ethics declarations

Conflict of interest

Dr. Laszlo Otvos is the inventor of a composition of matter patent covering the peptide APO monomer (owned by Temple University).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebe, I., Ostorhazi, E., Fekete, A. et al. Polyvinyl alcohol nanofiber formulation of the designer antimicrobial peptide APO sterilizes Acinetobacter baumannii-infected skin wounds in mice. Amino Acids 48, 203–211 (2016). https://doi.org/10.1007/s00726-015-2080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2080-4

Keywords

Navigation