Skip to main content
Log in

The effect of aspartate supplementation on the microbial composition and innate immunity on mice

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The study was conducted to investigate the changes of intestinal microbiota composition and innate immunity with different dietary dosages of aspartate (Asp) supplementation. Thirty-six female ICR mice were divided randomly to four groups and thereafter fed the basal diets (controls) or those supplemented with additional 0.5, 1.0 and 2.0% aspartate. After 2 week feeding, microbial composition in ileum and feces, gene expression of pro-inflammatory cytokine, and innate immune factors in ileum were determined. The ratio of Firmicutes: Bacteroidetes in ileum and feces decreased in 0.5 and 1.0% Asp-supplemented groups, whereas this ratio increased in feces in 2.0% Asp-supplemented group. Meanwhile, the gene expression of IL-17 and IFN-γ in ileum decreased in 1.0% Asp-supplemented group; the gene expression in ileum of Muc2 decreased in 0.5 and 1.0% Asp-supplemented groups. Dietary supplementation with 2.0% Asp enhanced the expression of pIgR and Crp1 as compared to the other three groups. The results indicated that dietary 1.0% Asp supplementation lowers the ratio of Firmicutes:Bacteroidetes, which affects the innate immunity by decreasing the gene expression of IL-17, IFN-γ, and Muc2 in ileum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

iNOS:

Inducible nitric oxide synthase

TLR:

Toll-like receptor

Asp:

Aspartate

IL-17:

Interleukin-17

IFN-γ:

Interferon-gamma

pIgR:

Polymeric immunoglobulin receptor

Muc2:

Mucin-2

Muc4:

Mucin-4

Muc6:

Mucin-6

Crp1:

Cryptdins-1

Crp4:

Cryptdins-4

Crp5:

Cryptdins-5

Lzy2:

Lysozyme 2

SCFA:

Short-chain fatty acid

NOD:

Nucleotide-binding oligomerization domain protein

References

  • Akira S (2012) Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 33(9):449

    Article  PubMed  Google Scholar 

  • Barrio JR, Egbert JE, Henze E, Schelbert HR, Baumgartner FJ (1982) L-[4-11C]aspartic acid: enzymatic synthesis, myocardial uptake, and metabolism. J Med Chem 25(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Wu G, Yin Y (2013) Nutritional and physiological functions of amino acids in pigs. Springer, Vienna

    Book  Google Scholar 

  • Cao AT, Yao S, Stefka AT, Liu Z, Qin H, Liu H, Evansmarin HL, Elson CO, Nagler CR, Cong Y (2014) TLR4 regulates IFN-γ and IL-17 production by both thymic and induced Foxp3 + Tregs during intestinal inflammation. J Leukoc Biol 96(5):895–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Coll RC, O’Neill LAJ (2010) New insights into the regulation of signalling by toll-like receptors and nod-like receptors. J Innate Immun 2(5):406–421

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16(1):1768

    Article  CAS  Google Scholar 

  • Duan J, Yin J, Ren W, Liu T, Cui Z, Huang X, Wu L, Kim SW, Liu G, Wu X, Wu G, Li T, Yin Y (2016) Dietary supplementation with l-glutamate and l-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids 48(1):53–64. doi:10.1007/s00726-015-2065-3

    Article  CAS  PubMed  Google Scholar 

  • Hartmann P, Seebauer CT, Mazagova M, Horvath A, Wang L, Llorente C, Varki NM, Brandl K, Ho SB, Schnabl B (2015) Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity. Am J Physiol Gastrointest Liver Physiol 11(3):ajpgi.00094.02015

    Google Scholar 

  • Hildebrandt MA, Hoffmann C, Sherrillmix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137(5):1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodin CM, Visschers RG, Rensen SS, Boonen B, Olde Damink SW, Lenaerts K, Buurman WA (2012) Total parenteral nutrition induces a shift in the Firmicutes to Bacteroidetes ratio in association with Paneth cell activation in rats. J Nutr 142(12):2141–2147

    Article  CAS  PubMed  Google Scholar 

  • Ivanov II, Dan RL (2011) Modulation of immune homeostasis by commensal bacteria. Curr Opin Microbiol 14(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Lin Y, Lin L, Zheng C (2012) IL-17/IFN-γ interactions regulate intestinal inflammation in TNBS-induced acute colitis. J Interfer Cytokine Res Off J Int Soc Interfer Cytokine Res 32(11):548

    Article  CAS  Google Scholar 

  • Kim Y, Kim SH, Whang KY, Kim YJ, Oh S (2008) Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J Microbiol Biotechnol 18(7):1278–1285

    CAS  PubMed  Google Scholar 

  • Lee WJ, Hase K (2014) Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol 10(6):416–424

    Article  CAS  PubMed  Google Scholar 

  • Lee KD, Guk SM, Chai JY (1937) Toll-like receptor 2 and Muc2 expression on human intestinal ep. J Parasitol 96(1):58–66

    Article  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022

    Article  CAS  PubMed  Google Scholar 

  • Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98(2):237–252. doi:10.1017/S000711450769936X

    Article  CAS  PubMed  Google Scholar 

  • Mariat D, Firmesse O, Levenez F, Guimarăes VD, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Sakuragi N, Takakuwa A, Ayabe T (2015) Paneth cell α-defensins and enteric microbiota in health and disease. Biosci Microb Food Health 35(2):57–67

    Article  Google Scholar 

  • Newsholme EA, Calder PC (1997) The proposed role of glutamine in some cells of the immune system and speculative consequences for the whole animal. Nutrition 13(13):728–730

    Article  CAS  PubMed  Google Scholar 

  • Ouellette AJ, Bevins CL (2001) Paneth cell defensins and innate immunity of the small bowel. Inflamm Bowel Dis 7(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Peters IR, Helps CR, Batt RM, Day MJ, Hall EJ (2003) Quantitative real-time RT-PCR measurement of mRNA encoding alpha-chain, pIgR and J-chain from canine duodenal mucosa. J Immunol Methods 275(1–2):213–222

    Article  CAS  PubMed  Google Scholar 

  • Pi D, Liu Y, Shi H, Li S, Odle J, Lin X, Zhu H, Chen F, Hou Y, Leng W (2014) Dietary supplementation of aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge. J Nutr Biochem 25(4):456–462

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Chen S, Yin J, Duan J, Li T, Liu G, Feng Z, Tan B, Yin Y, Wu G (2014a) Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 144(6):988

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Duan J, Yin J, Liu G, Cao Z, Xiong X, Chen S, Li T, Yin Y, Hou Y, Wu G (2014b) Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids 46(10):2403–2413. doi:10.1007/s00726-014-1793-0

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Jie Y, Duan J, Gang L, Zhu X, Shuai C, Li T, Wang S, Tang Y, Hardwidge PR (2014c) Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection. Microbes Infect 16(11):954–961

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Yin J, Wu M, Liu G, Yang G, Yan X, Su D, Wu L, Li T, Chen S (2014d) Serum amino acids profile and the beneficial effects of l-arginine or l-glutamine supplementation in dextran sulfate sodium colitis. PLoS One 9(2):e88335

    Article  PubMed  PubMed Central  Google Scholar 

  • Reséndizalbor AA, Reinagarfias H, Rojashernández S, Jarilloluna A, Riveraaguilar V, Miliargarcía A, Camposrodríguez R (2010) Regionalization of pIgR expression in the mucosa of mouse small intestine. Immunol Lett 128(1):59–67

    Article  Google Scholar 

  • Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959

    Article  CAS  PubMed  Google Scholar 

  • Vandenbroucke RE, Vanlaere I, Van HF, Van WE, Wilson C, Libert C (2014) Pro-inflammatory effects of matrix metalloproteinase 7 in acute inflammation. Mucosal Immunol (1933–0219) 7(3):579

    Article  CAS  Google Scholar 

  • Wang H, Liu Y, Shi H, Wang X, Zhu H, Pi D, Leng W, Li S (2016) Aspartate attenuates intestinal injury and inhibits TLR4 and NODs/NF-κB and p38 signaling in weaned pigs after LPS challenge. Eur J Nutr 56:1–11

    CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1(1):31–37. doi:10.3945/an.110.1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45(3):407–411. doi:10.1007/s00726-013-1500-6

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin Y-L (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112(1–2):8–22. doi:10.1016/j.livsci.2007.07.003

    Article  Google Scholar 

  • Xiao D, Ren W, Peng B, Chen S, Yin J, Gao W, Liu G, Nan Z, Hu X, He J (2016) Chitosan lowers body weight through intestinal microbiota and reduces IL-17 expression via mTOR signalling. J Funct Foods 22:166–176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2016YFD0500504, 2016YFD0501201), International Partnership Program of Chinese Academy of Sciences (161343KYSB20160008), Key Programs of frontier scientific research of the Chinese Academy of Sciences (QYZDY-SSW- SMC008), National Natural Science Foundation of China (Nos. 31570114, 31330075, 31110103909), and Chinese Academy of Sciences visiting professorship for senior international scientists Grant No. 2016VBB007.

Author information

Authors and Affiliations

Authors

Contributions

G.L., R.H., and Y.Y. conceived the experiment(s), P.B. and S.L. conducted the experiments, P.B., S.L., and G.L. analyzed the results. P.B., G.L., and C.A.H. prepared the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Gang Liu.

Ethics declarations

Ethical approval

The protocol for this study was approved by the Committee on the Ethics of Animal Experiments of Institute of Subtropical Agriculture, Chinese Academy of Sciences, and it was conducted out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of Institute of Subtropical Agriculture, Chinese Academy of Sciences.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Handling Editors: C.-A.A. Hu, Y. Yin, Y. Hou, G. Wu, Y. Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, P., Liu, S., Chen, S. et al. The effect of aspartate supplementation on the microbial composition and innate immunity on mice. Amino Acids 49, 2045–2051 (2017). https://doi.org/10.1007/s00726-017-2467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2467-5

Keywords

Navigation