Skip to main content

Advertisement

Log in

CO2 Storage related Groundwater Impacts and Protection

Grundwasserbeeinflussung und Grundwasserschutz bei der geologischen CO2-Speicherung

  • Übersichtsbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

An Erratum to this article was published on 07 November 2016

Abstract

Injection of CO2 into the deep subsurface will affect physical and chemical conditions in the storage environment. Hence, geological CO2 storage can have potential impacts on groundwater resources. Shallow freshwater can only be affected if leakage pathways facilitate the ascent of CO2 or saline formation water. Leakage associated with CO2 storage cannot be excluded, but potential environmental impacts could be reduced by selecting suitable storage locations. In the framework of risk assessment, testing of models and scenarios against operational data has to be performed repeatedly in order to predict the long-term fate of CO2. Monitoring of a storage site should reveal any deviations from expected storage performance, so that corrective measures can be taken. Comprehensive R & D activities and experience from several storage projects will enhance the state of knowledge on geological CO2 storage, thus enabling safe storage operations at well-characterised and carefully selected storage sites while meeting the requirements of groundwater protection.

Zusammenfassung

Die Speicherung von CO2 in den tieferen Untergrund beeinflusst die physikalischen und chemischen Bedingungen im Speicherhorizont sowie im Deckgebirge. Somit sind auch Auswirkungen auf Grundwasservorkommen möglich. Oberflächennahes Trinkwasser ist nur dann betroffen, wenn Leckagewege den Aufstieg von CO2 oder salinarem Formationswasser ermöglichen. Eine durch CO2-Speicherung verursachte Leckage kann nicht ausgeschlossen werden, jedoch können potenzielle Auswirkungen auf die Umwelt minimiert werden, indem geeignete Speicherstandorte ausgewählt werden. Im Rahmen der Risikobewertung ist es erforderlich, Speichermodelle und Szenarien mit Daten aus dem Speicherbetrieb wiederholt abzugleichen, um das langfristige Verhalten von CO2 zu prognostizieren. Die Überwachung eines Speicherstandortes soll Abweichungen vom erwarteten Speicherbetrieb frühzeitig anzeigen, sodass angemessene Maßnahmen zur Risikobehandlung ergriffen werden können. Umfassende F&E-Aktivitäten und Erfahrungen aus Speicherprojekten verbessern fortwährend den Stand des Wissens über die geologische Speicherung von CO2. Demnach ist für gut charakterisierte und sorgfältig ausgewählte Speicherstandorte ein sicherer Speicherbetrieb erzielbar, der den Anforderungen des Grundwasserschutzes gerecht wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alemu, B.L., Aagaard, P., Munz, I.A., Skurtveit, E.: Caprock interaction with CO2: A laboratory study of reactivity of shale with supercritical CO2 and brine. Appl. Geochem. 26, 1975–1989 (2011)

    Article  Google Scholar 

  • Amann-Hildenbrand, A., Bertier, P., Busch, A., Krooss, B.M.: Experimental investigation of the sealing capacity of generic clay-rich caprocks. Int. J. Greenhouse Gas Control. 19, 620–641 (2013)

    Article  Google Scholar 

  • Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. 2nd edn. pp 668. CRC Press, Florida (2005)

    Book  Google Scholar 

  • Apps, J.A., Zhang, Y., Zheng, L., Xu, T., Birkholzer, J.T.: Identification of thermodynamic controls defining the concentration of hazardous elements in potable ground waters and the potential impact of increasing carbon dioxide partial pressure. Energy Procedia. 1, 1917–1924 (2009)

    Article  Google Scholar 

  • Ardelan, M.V., Steinnes, E.: Changes in mobility and solubility of the redox sensitive metals Fe, Mn and Co at the seawater-sediment interface following CO2 seepage. Biogeosciences. 7, 569–583 (2010)

    Article  Google Scholar 

  • Bacci, G., Durucan, S., Korre, A.: Experimental and numerical study of the effects of halite scaling on injectivity and seal performance during CO2 injection in saline aquifers. Energy Procedia. 37, 3275–3282 (2013)

    Article  Google Scholar 

  • Bachu, S., Gunter, W.D., Perkins, E.H.: Aquifer disposal of CO2: hydrodynamic and mineral, Trapping. Energy Convers. Manage. 35(4), 269–279 (1994)

    Article  Google Scholar 

  • Bandilla, K.W., Celia, M.A., Birkholzer, J.T., Cihan, A., Leister, E.C.: Multiphase Modeling of Geologic Carbon Sequestration in Saline Aquifers. Groundwater. 53(3), 362–377 (2015)

    Article  Google Scholar 

  • Benedictus, T., van der Kuip, M.D.C., Kronimus, R.A., Huibregtse, J.N., Yavuz, F., Remmelts, G., Stam, J.C.: Long term integrity of CO2 storage—Well abandonment. IEA Greenhouse Gas R & D Programme (IEAGHG), Technical Study, Report No. 2009/08, pp 173 (2009)

  • Benisch, K., Bauer, S.: Short-and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int. J. Greenhouse Gas Control. 19, 220–233 (2013)

    Article  Google Scholar 

  • Bettge, D., Bäßler, R., Yevtushenko, O., Kranzmann, A.: MINIRISK—Risikominimierung korrosionsbedingter Schäden bei CO2-Abscheidung, Transport und Speicherung—Schlussbericht für das Verbundvorhaben COORAL. Bundesanstalt für Materialforschung und -prüfung; Berlin, pp 60 (2014)

  • Birkholzer, J., Tsang, C.F., Benson, S., Karimjee, A., Kobelski, B. (eds.): CO2SC 2006 International Symposium on Site Characterization for CO2 Geological Storage. March 20–22, 2006, Lawrence Berkeley National Laboratory, Berkeley, California, pp 276 (2006)

  • Birkholzer, J.T., Zhou, Q., Tsang, C.F.: Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int. J. Greenhouse Gas Control. 3, 181–194 (2009)

    Article  Google Scholar 

  • Birkholzer, J.T., Oldenburg, C., Zhou, Q.: CO2 migration and pressure evolution in deep saline aquifers. Int. J. Greenhouse Gas Control (in press, corrected proof, available online 8 April 2015)

  • Boreham, C., Underschultz, J., Stalker, L., Kirste, D., Freifeld, B., Jenkins, C., Ennis-King, J.: Monitoring of CO2 storage in a depleted natural gas reservoir: gas geochemistry from the CO2CRC Otway Project, Australia. Int. J. Greenhouse Gas Control. 5(4), 1039–1054 (2011)

    Article  Google Scholar 

  • Bruckdorfer, R.A.: Carbon dioxide corrosion in oilwell cements. Paper SPE 15176. Rocky Mountain Regional Meeting of the Society of Petroleum Engineers, Billings, MT, U.S.A., 1–3 April (1986)

  • Bruno, M.S., Lao, K., Diessl, J., Childers, B., Xiang, J., White, N., van der Veer, E.: Development of improved caprock integrity analysis and risk assessment techniques. Energy Procedia. 63, 4708–4744 (2014)

    Article  Google Scholar 

  • Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D.N., Raven, M.D., Stanjek, H., Krooss, B.M.: Carbon dioxide storage potential of shales. Int. J. Greenhouse Gas Control. 2(3), 297–308 (2008)

    Article  Google Scholar 

  • Cailly, B., Le Thiez, P., Egermann, P., Audibert, A., Vidal-Gilbert, S., Longaygue, X.: Geological Storage of CO2: A State-of-the-Art of Injection Processes and Technologies. Oil & Gas Science and Technology—Rev. IFP. 60(3), 517–525 (2005)

  • Cappa, F., Rutqvist, J.: Seismic rupture and ground accelerations induced by CO2 injection in the shallow crust. Geophys. J. Int. 190, 1784–1789 (2012)

    Article  Google Scholar 

  • Carey, J.W., Wigand, M., Chipera, S.J., Gabriel, G.W., Pawar, R., Lichtner, P.C., Wehner, S.C., Raines, M.A., Guthrie Jr, G.D.: Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. Int. J. Greenhouse Gas Control. 1, 75–85 (2007)

    Article  Google Scholar 

  • Carlé, W.: Die Mineral- und Thermalwässer von Mitteleuropa. pp 643; Wissenschaftliche Verlagsgesellschaft, Stuttgart (1975)

    Google Scholar 

  • Celia, M.A., Nordbotten, J.M.: Practical modeling approaches for geological storage of carbon dioxide. Groundwater. 47, 627–638 (2009)

    Article  Google Scholar 

  • Chugunov, N., Senel, O., Ramakrishnan, T.S.: Reducing Uncertainty in Reservoir Model Predictions: from Plume Evolution to Tool Responses. Energy Procedia. 37, 3687–3698 (2013)

    Article  Google Scholar 

  • Cihan, A., Zhou, Q., Birkholzer, J.T.: Analytical solutions for pressure perturbation and fluid leakage through aquitards and wells in multilayered‐aquifer systems. Water Resour. Res. 47(10), W10504 (2011)

    Article  Google Scholar 

  • Cihan, A., Birkholzer, J.T., Zhou, Q.: Pressure buildup and brine migration during CO2 storage in multilayered aquifers. Groundwater. 51, 252–267 (2013)

    Google Scholar 

  • Cinar, Y., Riaz, A.: Carbon dioxide sequestration in saline formations: Part 2—Review of multiphase flow modeling. J. Petroleum Sci. Eng. 124, 381–398 (2014)

    Article  Google Scholar 

  • Cook, P. (ed.): Geologically Storing Carbon: Learning from the Otway Project Experience. pp 408; CSIRO Publishing, Melbourne (2014)

    Google Scholar 

  • Czernichowski-Lauriol, I., Sanjuan, B., Rochelle, C., Bateman, K., Pearce, J., Blackwell, P.: Inorganic geochemistry. In: Holloway, S. (ed.): Final Report of the Joule II Project No. CT92-0031, The Underground Disposal of Carbon Dioxide, Nottingham, UK, British Geological Survey, 183–276 (1996)

  • Department of Trade and Industry: Monitoring Technologies for Geological Storage of CO2. TSR025. pp 28 (2005)

  • Dethlefsen, F., Köber, R., Schäfer, D., Attia al Hagrey, S., Hornbruch, G., Eberta, M., Beyer, M., Großmann, J., Dahmke, A.: Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia. 37, 4886–4893 (2013)

    Article  Google Scholar 

  • Dong, H.: Mineral-microbe interactions: A review. Front. Earth Sci. China. 4, 127–147 (2010)

    Article  Google Scholar 

  • Doughty, C., Freifeld, B.M.: Modeling CO2 injection at Cranfield, Mississippi: Investigation of methane and temperature effects. Greenhouse Gases: Sci. Technol. 3(6), 475–490 (2013)

    Article  Google Scholar 

  • EC Directive: Implementation of Directive 2006/118/EC on the protection of groundwater against pollution and deterioration. Official Journal of the European Parliament L372/19, pp 13 (2006)

  • EC Directive: Implementation of Directive 2009/31/EC on the geological storage of carbon dioxide. Official Journal of the European Parliament L140/114, pp 22 (2009)

  • European Commission: Implementation of Directive 2009/31/EC on the Geological Storage of Carbon Dioxide, CO2 Storage Life Cycle Risk Management Framework. Guidance Document 1, pp 60 (2011)

  • Feitz, A., Leamon, G., Jenkins, C., Jones, D.G., Moreira, A., Bressan, L., Melo, C., Dobeck, L.M., Repasky, K., Spangler, L.H.: Looking for leakage or monitoring for public assurance? Energy Procedia. 63, 3881–3890 (2014)

    Article  Google Scholar 

  • Finley, R.J.: An overview of the Illinois Basin–Decatur project. Greenhouse Gases: Sci. Technol. 4(5), 571–579 (2014)

    Article  Google Scholar 

  • Fischedick, M., Görner, K., Thomeczek, M. (eds.): CO2: Abtrennung, Speicherung, Nutzung: Ganzheitliche Bewertung im Bereich von Energiewirtschaft und Industrie. pp 855; Springer, Berlin (2015)

    Google Scholar 

  • Fitts, J.P., Peters, C.A.: Caprock fracture dissolution and CO2 leakage. Rev. Mineral. Geochem. 77(1), 459–479 (2013)

    Article  Google Scholar 

  • Freifeld, B.M., Trautz, R.C., Kharaka, Y.K., Phelps, T.J., Myer, L.R., Hovorka, S.D., Collins, D.J.: The U-tube: A novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment. J. Geophys. Res.110(B10203) (2005)

  • Frey, C., Michels, J., Wege, R.: Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Grundwässer und Böden. Standortkompendium. Forschungszentrum Karlsruhe, pp 245 (2005)

  • Gasda, S.E., Bachu, S., Celia, M.A.: Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ. Geol. 46, 707–720 (2004)

    Article  Google Scholar 

  • Gaus, I., Azaroual, M., Czernichowski-Lauriol, I.: Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem. Geol. 217(3–4), 319–337 (2005)

    Article  Google Scholar 

  • Gaus, I.: Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int. J. Greenhouse Gas Control. 4, 73–89 (2010)

    Article  Google Scholar 

  • Gerstenberger, M., Nicol, A., Stenhouse, M., Allinson, G., Berryman, K., Doody, B., Ho, M., McCurdy, M., Neal, P., Stirling M., Webb, T., Wright, K.: Opportunities for underground geological storage of CO2 in New Zealand—Report CCS-08/10– Risk assessment methodologies. GNS Science Report. 63, 74 (2009)

    Google Scholar 

  • Global CCS Institute: The global Status of CCS: 2014, pp 192 (2014) http://www.globalccsinstitute.com/publications/global-status-ccs-2014 (accessed 22 May 2015)

  • Gunter, W.D., Perkins, E.H., McCann, T.J.: Aquifer disposal of CO2-rich gases: reaction design for added capacity. Energy Convers. Manage. 34, 941–948 (1993)

    Article  Google Scholar 

  • von Goerne, G., Weinlich, F., May, F.: Anforderungen und Vorschläge zur Erstellung von Leitfäden und Richtlinien für eine dauerhafte und sichere Speicherung von CO2. pp 250, Hannover (2010)

  • Gollakota, S., McDonald, S.: Commercial-scale CCS Project in Decatur, Illinois–Construction Status and Operational Plans for Demonstration. Energy Procedia. 63, 5986–5993 (2014)

    Article  Google Scholar 

  • Harvey, O.R., Qafoku, N.P., Cantrell, K.J., Lee, G., Amonette, J.E., Brown, C.F.: Geochemical Implications of Gas Leakage associated with Geologic CO2 Storage—A Qualitative Review. Environ. Sci. Technol. 47(1), 23–36 (2013)

    Article  Google Scholar 

  • Hnottavange-Telleen, K., Chabora, E., Finley, R.J., Greenberg, S.E., Marsteller, S.: Risk management in a large-scale CO2 geosequestration pilot project, Illinois, USA. Energy Procedia. 4, 4044–4051 (2011)

    Article  Google Scholar 

  • Hosa, A., Esentia, M., Stewart, J., Haszeldine, S.: Benchmarking worldwide CO2 saline aquifer injections. Scottish Centre for Carbon Capture and Storage, pp 70 (2010)

  • Hovorka, S.D., Meckel, T.A., Trevino, R.H., Lu, J., Nicot, J.P., Choi, J.W., Freeman, D., Cook, P., Daley, T.M., Ajo-Franklin, J.B., Freifeld, B.M., Doughty, C., Carrigan, C.R., La Brecque, D., Kharaka, Y.K., Thordsen, J.J., Phelps, T.J., Yang, C., Romanak, K.D., Zhang, T., Holt, R.M., Lindler, J.S., Butsch, R.J.: Monitoring a large volume CO2 injection: year two results from SECARB project at Denbury’s Cranfield, Mississippi, USA. Energy Procedia. 4, 3478–3485 (2011)

    Article  Google Scholar 

  • Hovorka, S.D., Meckel, T.A., Treviño, R.H.: Monitoring a large-volume injection at Cranfield, Mississippi-Project design and recommendations. Int. J. Greenhouse Gas Control. 18, 345–360 (2013)

    Article  Google Scholar 

  • Huang, X., Bandilla, K.W., Celia, M.A., Bachu, S.: Basin-scale modeling of CO2 storage using models of varying complexity. Int. J. Greenhouse Gas Control. 20, 73–86 (2014)

    Article  Google Scholar 

  • IPCC: Climate Change 2014– Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, pp 151 (2014)

  • Jensen, G.K., Nickel, E.H., Rostron, B.J.: Refinement of the Weyburn-Midale geological and hydrogeological model: Developing a better framework to determine reservoir response to injected CO2 and subsequent CO2 movement. Int. J. Greenhouse Gas Control. 16, 5–14 (2013)

    Article  Google Scholar 

  • Kaszuba, J.P., Yardley, B., Andreani, M.: Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide-water-rock interactions. Rev. Mineral. Geochem. 77, 153–188 (2013)

    Article  Google Scholar 

  • Katzung, G., Krull, P., Kuhn, F.: Die Havarie der UGS-Sonde Lauchstädt 5 im Jahre 1988– Auswirkungen und geologische Bedingungen. Z. Angew. Geologie. 42, 19–26 (1996)

    Google Scholar 

  • Keating, E.H., Fessenden, J., Kanjorski, N., Koning, D.J., Pawar, R.: The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environ. Earth Sci. 60, 521–536 (2010)

    Article  Google Scholar 

  • Kempka, T., Klein, E., De Lucia, M., Tillner, E., Kühn, M.: Assessment of long-term CO2 trapping mechanisms at the Ketzin pilot site (Germany) by coupled numerical modelling. Energy Procedia. 37, 5419–5426 (2013)

    Article  Google Scholar 

  • Kharaka, Y.K., Thordsen, J.J., Kakouros, E., Ambats, G., Herkelrath, W.N., Beers, S.R., Birkholzer, J.T., Apps, J.A., Spycher, N.F., Zheng, L., Trautz, R.C., Rauch, H.W., Gullickson, K.S.: Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environ. Earth Sci. 60(2), 273–264 (2010)

    Article  Google Scholar 

  • Korre, A., Durucan, S.: A review of the international state of the art in risk assessment guidelines and proposed terminology for use in CO2 geological storage. Imperial College London: IEAGHG R & D Programme, pp 83 (2009)

  • Korre, A., Durucan, S., Imrie, C.E., May, F., Krueger, M., Spickenbom, K., Fabriol, H., Vandeweijer, V.P., Golmen, L., Persoglia, S., Piccoti, S., Praeg, D., Beaubien, S.: Quantification Techniques for CO2 Leakage. IEAGHG Report 02, 1–132 (2012)

    Google Scholar 

  • Kunkel, R., Voigt, H.J., Wendland, F., Hannappel, S.: Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland. Schr. Forschungszent. Jülich, Reihe Umwelt/Environ. 47, 1–204 (2004)

  • Kurdowski, W.: Cement and concrete chemistry. pp 700; Springer Science & Business, Dordrecht (2014)

    Book  Google Scholar 

  • Kutchko, B.G., Strazisar, B.R., Dzombak, D.A., Lowry, G.V., Thaulow, N.: Degradation of Well Cement by CO2 under Geologic Sequestration Conditions. Environ. Sci. Technol. 41(12), 4787–4792 (2007)

    Article  Google Scholar 

  • Leung, D.Y., Caramanna, G., Maroto-Valer, M.M.: An overview of current status of carbon dioxide capture and storage technologies. Renewable Sustainable Energy Rev. 39, 426–443 (2014)

    Article  Google Scholar 

  • Li, X., Yuan, W., Bai, B., Liu, M., He, H.: Geomechanical modeling of CO2 storage in deep saline aquifers—A review. RapidMiner: Data Mining Use Cases and Business Analytics Applications, 79–89 (2013)

  • Liebscher, A., Martens, S., Möller, F., Lüth, S., Schmidt-Hattenberger, C., Kempka, T., Szizybalski, A., Kühn, M.: Überwachung und Modellierung der geologischen CO2-Speicherung—Erfahrungen vom Pilotstandort Ketzin, Brandenburg (Deutschland). geotechnik. 35(3), 177–186 (2012)

    Article  Google Scholar 

  • Liebscher, A., Möller, F., Bannach, A., Köhler, S., Wiebach, J., Schmidt-Hattenberger, C., Weiner, M., Pretschner, C., Ebert, K., Zemke, J.: Injection operation and operational pressure–temperature monitoring at the CO2 storage pilot site Ketzin, Germany—Design, results, recommendations. Int. J. Greenhouse Gas Control. 15, 163–173 (2013a)

    Article  Google Scholar 

  • Liebscher, A., Martens, S., Möller, F., Kühn, M.: On-shore CO2 storage at the Ketzin pilot site in Germany. In: Gluyas, J. & Mathias, S. (eds): Geoscience of carbon dioxide (CO2) storage. Woodhead Publishing Limited, 287–300 (2013b)

  • Lions, J., Bricker, S., Gale, I., Kirk, K., Knopf, S., Rütters, H., Beaubien, S., Kjøller, C., May, F., Nygaard, E., Audigane, P., Rohmer, J., Hatzignatious, D.G., Sohrabi, M.: Potential Impact on Groundwater Resources of CO2 Geological Storage. IEAGHG Report. 11, 1–201 (2011)

    Google Scholar 

  • Lions, J., Devau, N., de Lary, L., Dupraz, S., Parmentier, M., Gombert, P., Dictor, M.C.: Potential impacts of leakage from CO2 geological storage on geochemical processes controlling fresh groundwater quality: A review. Int. J. Greenhouse Gas Control. 22, 165–175 (2014)

    Article  Google Scholar 

  • Liu, F., Lu, P., Griffith, C., Hedges, S.W., Soong, Y., Hellevang, H., Zhu, C.: CO2-brine-caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. Int. J. Greenhouse Gas Control. 7, 153–167 (2012)

    Article  Google Scholar 

  • Loizzo, M., Miersemann, U., Lamy, P., Garnier, A.: Advanced cement integrity evaluation of an old well in the Rousse field. Energy Procedia. 37, 5710–5721 (2013)

    Article  Google Scholar 

  • Lu, J., Partin, J.W., Hovorka, S.D., Wong, C.: Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch-reaction experiment. Environ. Earth Sci. 60, 335–348 (2010)

    Article  Google Scholar 

  • Manceau, J.C., Hatzignatiou, D.G., De Lary, L., Jensen, N.B., Flornes, K., Le Guénan, T., Réveillère: Methodologies and technologies for mitigation of undesired CO2 migration in the subsurface. IEAGHG Report 2013/20, pp 168 (2013)

  • Martens, S., Liebscher, A., Möller, F., Henninges, J., Kempka, T., Lüth, S., Norden, B., Prevedel, B., Szizybalski, A., Zimmer, M., Kühn, M., and the Ketzin Group: CO2 Storage at the Ketzin Pilot Site, Germany: Fourth Year of Injection, Monitoring, Modelling and Verification. Energy Procedia. 37, 6434–6443 (2013)

    Article  Google Scholar 

  • Martens, S., Moeller, F., Streibel, M., Liebscher, A.: Completion of five years of safe CO2 injection and transition into the post-closure phase at the Ketzin pilot site. Energy Procedia. 59, 190–197 (2014)

    Article  Google Scholar 

  • Martens, S., Kempka, T., Liebscher, A., Möller, F., Schmidt-Hattenberger, C., Streibel, S., Szizybalski, A., Zimmer, M.: Field experiment on CO2 back-production at the Ketzin pilot site. Energy Procedia, accepted, (2015)

  • May, F.: Säuerlinge der Vulkaneifel und der Südeifel. Mainzer Geowiss. Mitt. 31, 7–58 (2002)

    Google Scholar 

  • May, F.: Geochemical impact assessment of CO2 storage in the North German Basin. In: Wanty, R.B., Seal, R.R. II (eds.): Water Rock Interaction. Balkema Leiden, London, New York, Philadelphia, Singapore 561–565 (2004)

  • May, F., Waldmann, S.: Tasks and challenges of geochemical monitoring. Greenhouse Gases: Sci. Technol. 4(2), 176–190 (2014)

    Article  Google Scholar 

  • McMahon, P.B., Chapelle, F.H.: Redox processes and water quality of selected principal aquifer systems. Groundwater. 46, 259–271 (2008)

    Article  Google Scholar 

  • Metz, B., Davidson, O., De Coninck, H. C., Loos, M., Meyer, L.A.: IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. IPCC. Cambridge University Press: Cambridge, 4, pp 442 (2005)

    Google Scholar 

  • Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., Aiken, T.: Geological storage of CO2 in saline aquifers—a review of the experience from existing storage operations. Int. J. Greenhouse Gas Control. 4, 659–667 (2010)

    Article  Google Scholar 

  • National Energy Technology Laboratory: Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations—2012 Update. DOE/NETL-2012/1568. pp 138 (2012).

  • Niedersächsischer Landtag—17. Wahlperiode, Drucksache 17/2608, Gesetzentwurf, Hannover, pp 15, 15.12.2014

  • Nordbotten, J.M., Celia, M.A., Bachu, S., Dahle, H.K.: Semianalytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39(2), 602–611 (2005)

    Article  Google Scholar 

  • Okamoto, I., Li, X., Ohsumi, T.: Effect of supercritical CO2 as the organic solvent on cap rock sealing performance for underground storage. Energy Procedia. 30(11), 2344–2351 (2005)

    Article  Google Scholar 

  • Palandri, J.L., Kharaka, Y.K.: A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Water-Resour. Invest. Rep. (U. S. Geol. Surv.), 2004–1068 (2004)

  • Pawar, R.J., Watson, T.L., Gable, C.W.: Numerical simulation of CO2 leakage through abandoned wells: model for an abandoned site with observed gas migration in Alberta, Canada. Energy Procedia. 1(1), 3625–3632 (2009)

    Article  Google Scholar 

  • Pettijohn, F.J., Potter, P.E., Siever, R.: Sand and Sandstone. pp 553; Springer, New York (1987)

    Book  Google Scholar 

  • Picard, G., Bérard, T., Chabora, E., Marsteller, S., Greenberg, S., Finley, R.J., Rinck, U., Greenaway, R., Champagnonf, C., Davard, J.: Real-time monitoring of CO2 storage sites: Application to Illinois Basin–Decatur Project. Energy Procedia. 4, 5594–5598 (2011)

    Article  Google Scholar 

  • Preston, C., Monea, M., Jazrawi, W., Brown, K., Whittaker, S., White, D., Law, D., Chalaturnyk, R., Rostron, B.: IEAGHG Weyburn CO2 monitoring and storage project. Fuel Processing Technol. 86, 1547–1568 (2005)

    Article  Google Scholar 

  • Quattrocchi, F., Cantucci, B., Cinti, D., Galli, G., Pizzino, L., Sciarra, A., Voltattorni, N.: Continuous/discrete geochemical monitoring of CO2 Natural Analogues and of Diffuse Degassing Structures (DDS): hints for CO2 storage sites geochemical monitoring protocol. Energy Procedia. 1, 2135–2142 (2009)

    Article  Google Scholar 

  • Rebscher, D., Oldenburg, C.M.: Sequestration of Carbon Dioxide with Enhanced Gas Recovery-Case Study Altmark, North German Basin. Lawrence Berkeley National Laboratory Report LBNL-59033, Berkeley, California, pp 110 (2005)

  • Reinicke, K.M., Mingxing, B., Bock, P., Fichter, C., Hou, Z., Krebs, R., Kretzschmar, H.J., Lubenau, U., Meyer, R., Rafiee, M., Rockmann, R., Schmidt, M., Schmitt, G., Schmitz, S., Teodoriu, C., Weichmann, M.J., Weinlich, F.H., Were, P., Wundram, L., Zhang, Y.: Well integrity. In Kühn, M., Münch, U. (eds.): CLEAN. CO2 large-scale enhanced gas recovery in the Altmark natural gas field—Geotechnologien science report 19, pp 13–51. Springer, Berlin (2013)

    Google Scholar 

  • Rempel, K.U., Liebscher, A., Heinrich, W., Schettler, G.: An experimental investigation of trace element dissolution in carbon dioxide: Applications to the geological storage of CO2. Chem Geol. 289(3–4), 224–234 (2011)

    Article  Google Scholar 

  • Reutter, E.: Hydrostratigrafische Gliederung Niedersachsen. Geofakten 21, Landesamt für Bergbau, Energie und Geologie, Hannover, pp 11 (2011)

  • Riaz, A., Cinar, Y.: Carbon dioxide sequestration in saline formations: Part I—Review of the modeling of solubility trapping. J. Petrol. Sci. Eng. 124, 367–380 (2014)

    Article  Google Scholar 

  • Rutqvist, J.: The geomechanics of CO2 storage in deep sedimentary formations. Geotechnical Geological Eng. 30(3), 525–551 (2012)

    Article  Google Scholar 

  • Rutqvist, J., Vasco, D.W., Myer, L.: Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int. J. Greenhouse Gas Control. 4, 225–230 (2010)

    Article  Google Scholar 

  • Rütters, H., Möller, I., May, F., Flornes, K., Hladik, V., Arvanitis, A., Gülec, N., Bakiler, C., Dudu, A., Kucharic, L., Juhojuntti, N., Shogenova, A., Georgiev, G.: State-of-the-art of monitoring methods to evaluate CO2 storage site performance. CGS Europe report D3.3, pp 109 (2013)

  • Schaef, H.T., Loring, J.S., Glezakou, V.-A., Miller, Q.R.S., Chen, J., Owen, A.T., Lee, M.-S., Ilton, E.S., Felmy, A.R., McGrail, B.P., Thompson, C.J.: Competitive sorption of CO2 and H2O in 2:1 layer phyllosilicates. Geochemica et Cosmochimica Acta. 161, 248–257 (2015)

    Article  Google Scholar 

  • Schäfer, D., Al Hagrey, S., Auken, E., Bahr, A., Beyer, M., Dahmke, A., Dumke, I., Foged, N., Furche, M., Gräber, M., Großmann, J., Helkjaer, M., Köber, R., Poggenburg, J., Naue, G., Schlömer, S., Seeger, C., Tischer, L., Vidal, A., Wiegers, C., Wöhrl, C.: Environmental and process monitoring. In: Kühn, M., Münch, U. (eds.): CLEAN. CO2 large-scale enhanced gas recovery in the Altmark natural gas field—Geotechnologien science report 19, pp 131–167. Springer, Berlin (2013)

    Google Scholar 

  • Schäfer, F., Walter, L., Class, H., Müller, C.: The regional pressure impact of CO2 storage: a showcase study from the North German Basin. Environ. Earth Sci. 65(7) 2037–2049 (2011)

    Article  Google Scholar 

  • Scherf, A.K., Zetzl, C., Smirnova, I., Zettlitzer, M., Vieth-Hillebrand, A.: Mobilisation of organic compounds from reservoir rocks through the injection of CO2 - comparison of baseline characterization and laboratory experiments. Energy Procedia. 4, 4524–4531 (2011)

    Article  Google Scholar 

  • Schleswig-Holsteinischer Landtag: Entwurf eines Gesetzes zur Regelung der Kohlendioxid-Speicherung in Schleswig-Holstein (KSpG SH), Drucksache 18/1020, Kiel, pp 30, 15.01.2014

  • Sharma, S., Cook, P., Berly, T., Lees, M.: The CO2CRC Otway Project: Overcoming challenges from planning to execution of Australia’s first CCS project. Energy Procedia. 1(1), 1965–1972 (2009)

    Article  Google Scholar 

  • Shi, J.-Q., Imrie, C., Sinayuc, C., Durucan, S., Korre, A., Eiken, O.: Snøhvit CO2 storage project: Assessment of CO2 injection performance through history matching of the injection well pressure over a 32-months period. Energy Procedia. 37, 3267–3274 (2013)

    Article  Google Scholar 

  • Siemon, B., Christiansen, A.V., Auken, E.: A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surface Geophysics. 7, 629–646 (2009)

    Article  Google Scholar 

  • Sminchak, J., Gupta, N., Byrer, C., Bergman, P.: Issues related to seismic activity induced by the injection of CO2 in deep saline aquifers. J. Energy Environ Res. 2, 32–46 (2002)

    Google Scholar 

  • Smith, M.M., Hao, Y., Mason, H.E., Carroll, S.A.: Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO2-acidified brine. Energy Procedia. 63, 3126–3137 (2014)

    Article  Google Scholar 

  • Smyth, R.C., Hovorka, S.D., Lu, J., Romanak, K.D., Partin, J.W., Wong, C., Yang, C.: Assessing risk to fresh water resources from long term CO2 injection—laboratory and field studies. Energy Procedia. 1, 1957–1964 (2009)

    Article  Google Scholar 

  • Strandli, C.W., Mehnert, E., Benson, S.M.: CO2 Plume Tracking and History Matching Using Multilevel Pressure Monitoring at the Illinois Basin–Decatur Project. Energy Procedia. 63, 4473–4484 (2014)

    Article  Google Scholar 

  • Streibel, M., Finley, R.J., Martens, S., Greenberg, S., Möller, F., Liebscher, A.: From Pilot to Demo Scale-Comparing Ketzin results with the Illinois Basin-decatur Project. Energy Procedia. 63, 6323–6334 (2014)

    Article  Google Scholar 

  • Tambach, T.J., Koenen, M., Wasch, L.J., van Bergen, F.: Geochemical evaluation of CO2 injection and containment in adepleted gas field. Int. J. Greenhouse Gas Control. 32, 61–80 (2015)

    Article  Google Scholar 

  • Tucker, O., Garnham, P., Wood, P., Berlang, W., Susanto, I.: Development of an offshore monitoring plan for a commercial CO2 storage pilot. Energy Procedia. 37, 4317–4335 (2013)

    Article  Google Scholar 

  • Vera, M., Schippers A., Sand, W.: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl. Microbiol. Biotechnol. 97, 7529–7541 (2013)

    Article  Google Scholar 

  • Vilarrasa, V., Carrera, J.: Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc. Natl. Acad. Sci. 112(19), 5938–5943 (2015a)

    Article  Google Scholar 

  • Vilarrasa, V., Carrera, J.: Reply to Zoback and Gorelick: Geologic carbon storage remains a safe strategy to significantly reduce CO2 emissions. Proceedings of the National Academy of Sciences, 201511302 (2015b)

  • Wang, D., Dong, B., Breen, S., Zhao, M., Qiao, J., Liu, Y., Zhang, Y., and Song, Y.: Review: Approaches to research on CO2/brine two-phase migration in saline aquifers. Hydrogeol J. 23(1), 1–18 (2015)

    Article  Google Scholar 

  • Wang, J., Ryan, D., Anthony, E.J., Wigston, A.: Effects of impurities on geological storage of CO2. IEAGHG Technical Report No. 2011/04, 1–87 (2011)

  • Watson, M.N., Gibson-Poole, C.M.: Reservoir selection for optimised geological injection and storage of carbon dioxide: a combined geochemical and stratigraphic perspective. In: The fourth annual conference on carbon capture and storage. National Energy Technology Laboratory, US Department of Energy, Alexandria (2005)

  • White, D.: Monitoring CO2 storage during EOR at the Weyburn-Midale Field. Leading Edge. 28(7), 838–842 (2009)

    Article  Google Scholar 

  • Wiegers, C.E., Schäfer, D.: Numerische Szenariosimulationen zur Ausbreitung von hochmineralisiertem Wasser in oberflächennahen Süßwasseraquiferen. Grundwasser. 20 (2), 85–95 (2015)

    Article  Google Scholar 

  • Wigand, M., Kaszuba, J.P., Carey, J.W., Hollis, W.K.: Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface. Chemical Geology. 265(1), 122–133 (2009)

    Article  Google Scholar 

  • Würdemann, H., Möller, F., Kühn, M., Heidug, W., Christensen, N.P., Borm, G., Schilling, F.R. and the CO2SINK Group: CO2SINK—From site characterisation and risk assessment to monitoring and verification: One year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. Int. J. Greenhouse Gas Control. 4, 938–951 (2010)

    Article  Google Scholar 

  • Yamagata, H.: Carbon Capture and Storage Activities in Japan, 4. Feasibility Study of the Ministry of Economy, Trade and Industry, Japan. pp 16 (2006)

  • Zhang, W., Li, Y., Xu, T., Cheng, H., Zheng, Y., Xiong, P.: Long-term variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China. Int. J. Greenhouse Gas Control. 3(2), 161–18 (2009)

    Article  Google Scholar 

  • Zheng, L., Apps, J.A., Zhang, Y., Xu, T., Birkholzer, J.T.: On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chem. Geol. 268, 281–297 (2009)

    Article  Google Scholar 

  • Zoback, M.D., Gorelick, S.M.: Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc. Natl. Acad. Sci. U. S. A. 109(26), 10164–10168 (2012)

    Article  Google Scholar 

  • Zoback, M.D., Gorelick, S.M.: To prevent earthquake triggering, pressure changes due to CO2 injection need to be limited. Proceedings of the National Academy of Sciences, 201508533 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Fischer.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00767-016-0344-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, S., Knopf, S., May, F. et al. CO2 Storage related Groundwater Impacts and Protection. Grundwasser 21, 5–21 (2016). https://doi.org/10.1007/s00767-015-0315-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-015-0315-7

Keywords

Navigation