Skip to main content
Log in

Quality assurance for molecular epidemiology of tuberculosis methods in the mycobacterium reference laboratory

  • Practitioner's Report
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

In the National Mycobacterium Reference Laboratory of the Israeli National Public Health Laboratory (hereafter referred to as “the laboratory”), three methods are employed for the molecular epidemiology of Mycobacterium tuberculosis: IS6110 restriction fragment length polymorphism typing (RFLP typing), 43 spacer oligonucleotide typing (spoligotyping), and 24 loci Mycobacterial Interspersed Repeating Unit—Variable Number of Tandem Repeats typing (MIRU-VNTR typing). In this article, we describe the main practical aspects concerning quality assurance of these methods that are based on standardized, internationally agreed upon conditions, including consensus reference strains and markers. All three methods were validated by classical epidemiology (confirmed transmission) and clinical information. The laboratory has introduced a new 5 colors, 4 primer sets multiplex modification of the optimal 24-miru typing system that includes an easily produced in-house internal standard for the high-throughput capillary electrophoresis system. Quantitative measurement of the internal standards yielded statistics for measurement uncertainty that include the frequency distribution, mean, standard deviation, 95% confidence interval and coefficient of variation. Use of the new internal standard developed in our laboratory allowed us to introduce the first quantitative evaluation of the system performance of the AB3130xl capillary electrophoresis genetic analyzer for MIRU-VNTR typing. The results are discussed in terms of expected accuracy and precision of MIRU-VNTR results, and possible implications for forensic microsatellite typing which may be much more sensitive to the observed intra- and inter-plate variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. http://www.who.int/mediacentre/factsheets/fs104/en/

  2. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit—variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510

    Article  CAS  Google Scholar 

  3. van Embden JDA, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, Small PM (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409

    Google Scholar 

  4. van Soolingen D, Kremer K (1999) Manual for restriction fragment length polymorphism (RFLP) typing. RIVM, Bilthoven

    Google Scholar 

  5. Dale JW, Brittain D, Cataldi AA, Cousins D, Crawford JT, Driscoll J, Heersma H, Lillbaek T, Quitugua T, Rasogi N, Skuce RA, Sola C, van Soolingen D, Vincent V (2001) Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standardized nomenclature. Int J Tuberc Lung Dis 5:216–219

    CAS  Google Scholar 

  6. Kremer K, van Soolingen D, Frothingham R, Haas WH, Hermans PWM, Martin C, Palittapongarnpim P, Plikaytis BB, Riley LW, Yakrus MA, Musser JM, van Embden JDA (1999) Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol 37:2607–2618

    CAS  Google Scholar 

  7. Allix-Beguec C, Fauville-Dufaux M, Supply P (2008) Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 46:1398–1406

    Article  Google Scholar 

  8. Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valetudie G, Anh DD, Barlow R, Banerjee D, Bifani PJ, Brudey K, Cataldi A, Cooksey C, Cousins DV, Dale JW, Dellagostin OA, Drobniewski F, Engelmann G, Ferdinand S, Gascoyne-Binzi D, Gordon M, Gutierrez MC, Haas WH, Heersma H, Kallenius G, Kassa-Kelembho E, Koivula T, Ly HM, Makristathis A, Mammina C, Martin G, Mostrom P, Mokrousov I, Narbonne V, Narvskaya O, Nastasi A, Niobe-Eyangoh SN, Pape Jw, Rasolofo-Razanamparany V, Ridell M, Rossetti L, Stauffer F, Suffys PN, Takiff H, Texier-Maugein J, Vincent V, de Waard JH, Sola C, Rastogi N (2002) Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg Infect Dis 8:1347–1349

    Google Scholar 

  9. Freidlin PJ, Goldblatt D, Kaidar-Shwartz H, Rorman E (2009) Polymorphic exact tandem repeat A (PETRA): a newly defined lineage of Mycobacterium tuberculosis in Israel originating predominantly in sub-Saharan Africa. J Clin Microbiol 47:4006–4020

    Article  CAS  Google Scholar 

  10. Supply P (2005) Multilocus variable number tandem repeat genotyping of Mycobacterium tuberculosis. Technical guide. Institut de Biologie/Institut Pasteur de Lill, Lille, France

  11. Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C (2000) Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36:762–771

    Article  CAS  Google Scholar 

  12. Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C (2001) Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39:3563–3571

    Article  CAS  Google Scholar 

  13. Mazars E, Lesjean S, Banuls A-L, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA 98:1901–1906

    Article  CAS  Google Scholar 

  14. Frothingham R, Meeker-O’Connell WA (1998) Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144:1189–1196

    Article  CAS  Google Scholar 

  15. Horvai G, Worsfold P, Karlberg B, Andersen JET (2011) European analytical column no. 39. Analytical chemistry and bioanalytical chemistry: a yet unshaped social relationship. Accred Qual Assur 16:267–269

    Article  Google Scholar 

  16. Wille SMR, Peters FT, Di Fazio V, Samyn N (2011) Practical aspects concerning validation and quality control for forensic and clinical bioanalytical quantitative methods. Accred Qual Assur. doi:10.1007/s00769-011-0775-0

  17. De Boer AS, Borgdorff MW, de Haas PEW, Nagelkerke NJD, van Embden JDA, van Soolingen D (1999) Analysis of rate of change of IS6110 RFLP patterns of Mycobacterium tuberculosis based on serial patient isolates. J Infect Dis 180:1238–1244

    Article  Google Scholar 

  18. Cave MD, Yang ZH, Stefanova R, Fomukong N, Ijaz K, Bates J, Eisenach KD (2005) Epidemiologic import of tuberculosis cases whose isolates have similar but not identical IS6110 restriction fragment length polymorphism patterns. J Clin Microbiol 43:1228–1233

    Article  CAS  Google Scholar 

  19. Schurch AC, Kremer K, Kiers A, Daviena O, Boeree MJ, Siezen RJ, Smith NH, van Soolingen D (2010) The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale. Infect Genet Evol 10:108–114

    Article  Google Scholar 

  20. De Boer A, Kremer K, Borgdorff MW, de Haas PEW, Heersma HF, vanSoolingen D (2000) Genetic heterogeneity in Mycobacterium tuberculosis isolates reflected in IS6110 restriction fragment length polymorphism patterns as low-intensity bands. J Clin Microbiol 38:4478–4484

    Google Scholar 

  21. Van Rie A, Victor TC, Richardson M, Johnson R, van der Spuy GD, Murray EJ, Beyers N, van Pittius NCG, van Helden PD, Warren RM (2005) Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns. Am J Respir Crit Care Med 172:636–642

    Article  Google Scholar 

  22. Niemann S, Koser CU, Gagneux S, Plinke C, Homolka S, Bignell H, Carter RJ, Cheetham RK, Cox A, Gormley NA, Kokko-Gonzales P, Murray LJ, Rigatti R, Smith VP, Arends FPM, Cox HS, Smith G, Archer AC (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4(10):e7407. doi:10.1371/journal.pone.0007407

    Google Scholar 

  23. Bhanu NV, van Soolingen D, van Embden JD, Dar L, Pandey RM, Seth P (2002) Predominance of a novel Mycobacterium tuberculosis genotype in the Delhi region of India. Tuberculosis 82:105–112

    Article  Google Scholar 

  24. Singh UB, Suresh N, Bhanu NV, Arora J, Pant H, Sinha S, Aggarwal RC, Singh S, Pande JN, Sola C, Rastogi N, Seth P (2004) Predominant tuberculosis spoligotypes, Delhi, India. Emerg Infect Dis 10:1138–1142

    Google Scholar 

  25. Sampson SL, Warren RM, Richardson M, van der Spuy GD, van Helden PD (1999) Disruption of coding regions by IS6110 insertion in Mycobacterium tuberculosis. Tubercle Lung Dis 79:349–359

    Article  CAS  Google Scholar 

  26. Warren RM, Sampson SL, Richardson M, van der Spuy GD, Lombard CF, Victor TC, van Helden PD (2000) Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol Microbiol 37:1405–1416

    Article  CAS  Google Scholar 

  27. Gascoyne-Binzi DM, Barlow REL, Essex A, Gelletlie R, Khan MA, Hafiz S, Collyns TA, Frizzell R, Hawkey PM (2002) Predominant VNTR family of strains of Mycobacterium tuberculosis isolated from South Asian patients. Int J Tuberc Lung Dis 6:492–496

    CAS  Google Scholar 

  28. Menendez MC, Buxton RS, Evans JT, Gascoyne-Binzi D, Barlow REL, Hinds J, Hawkey PM, Colston Dr MJ (2007) Genome analysis shows a common evolutionary origin for the dominant strains of Mycobacterium tuberculosis in a UK South Asian community. Tuberculosis 87:426–436

    Article  CAS  Google Scholar 

  29. De Viedma DG, Rodriguez NA, Andres S, Serrano MJR, Bouza E (2005) Characterization of clonal complexity in tuberculosis by mycobacterial interspersed repetitive unit—variable-number tandem repeat typing. J Clin Microbiol 43:5660–5664

    Article  Google Scholar 

  30. Dos Vultos T, Mestre O, Rauzier J, Golec M, Rastogi N, Rasolofo V, Tonjum T, Sola C, Matic I, Gicquel B. (2008) Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis. PLoS ONE 3(2):e1538. doi:10.1371/journal.pone.0001538

  31. Comas I, Homolka S, Niemann S, Gagneux S (2009) Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS ONE 4(11):e7815. doi:10.1371/journal.pone.0007815

Download references

Acknowledgments

This work was performed under the auspices of the Israeli National Program for the Prevention and Control of Tuberculosis run by the Ministry of Health. We thank Daniel Chemtob, Head, and Zohar Mor, acting Head, of the Department of Tuberculosis and AIDS for their support. We also thank Noa Cedar for help with epidemiology, and all the Israeli National Mycobacterium Reference Laboratory staff and the health care staff of the Department of Tuberculosis and AIDS. The Israeli National Program for the Prevention and Control of Tuberculosis is supported by the efforts of health care professionals in hospitals and tuberculosis health care clinics, and we acknowledge their contribution to making possible the timely diagnosis and collection of new tuberculosis isolates. BCG P2 (one of our reference materials) was kindly provided by Hillel Bercovier, the Hebrew University of Jerusalem. MT14323 (another reference material) was kindly provided by the RIVM, the Netherlands, Dick van Soolingen and Kristen Kremer.

Conflict of interest

The authors assert that there is no conflict of interest associated with any author concerning the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Freidlin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freidlin, P.J., Goldblatt, D., Kaidar-Shwartz, H. et al. Quality assurance for molecular epidemiology of tuberculosis methods in the mycobacterium reference laboratory. Accred Qual Assur 16, 623–635 (2011). https://doi.org/10.1007/s00769-011-0819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-011-0819-5

Keywords

Navigation