Skip to main content
Log in

Bottom slamming on heaving point absorber wave energy devices

  • Original Article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy shapes are considered: a hemisphere and two conical shapes with deadrise angles of 30° and 45°, with a waterline diameter of 5 m. The simulations indicate that the risk of rising out of the water is largely dependent on the buoy draft and sea state. Although associated with power losses, emergence occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45° cone is approximately 2, whereas the power absorption is only 4–8% higher for the 45° cone. This work illustrates the need to include slamming considerations aside from power absorption criteria in the buoy shape design process and the control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

b :

Wet radius at the instantaneous free water surface (m)

b hyd :

Hydrodynamic damping coefficient (kg/s)

b ext :

External damping coefficient (kg/s)

C s :

Slamming force coefficient (–)

C w :

Wetting factor (–)

d :

Draft (m)

f :

Frequency (Hz)

f i :

Frequency component (Hz)

f p :

Peak frequency (Hz)

F :

Force (N)

F ex :

Exciting force (N)

g :

Gravitational acceleration (m/s2)

h :

Drop height (m)

H s :

Significant wave height (m)

k :

Hydrostatic restoring coefficient (kg/s2)

K r :

Radiation impulse response function (kg/s2)

k SS :

Dimensionless value used to describe impact force (Shiffman and Spencer) (–)

m :

Body mass (kg)

m a :

Added mass (kg)

\(m_{\text{a}_{\infty}}\) :

High-frequency limit of the added mass (kg)

m sup :

Supplementary mass (kg)

n f :

Number of frequencies (–)

j :

Imaginary unit

p :

Pressure (bar = 105 Pa)

p abs :

Absorbed power (W)

r :

Radial coordinate (m)

R :

Radius of hemisphere (m)

S :

Spectrum (m2s)

t :

Time (s)

T p :

Peak period (s)

U :

Entry velocity (m/s)

z :

Vertical coordinate (m)

z A,sign :

Significant amplitude of the buoy position (m)

β :

Deadrise angle (° or rad)

ζ :

Water elevation (m)

ρ :

Mass density of fluid (kg/m3)

ω :

Angular frequency (rad/s)

ϕ z :

Phase angle of the buoy position (rad)

σ :

Spectral width parameter (–)

A :

Amplitude

s, sign:

Significant

References

  1. Peseux B, Gornet L, Donguy B (2005) Hydrodynamic impact: numerical and experimental investigations. J Fluids Struct 21(3):277–303

    Article  Google Scholar 

  2. Wienke J, Oumeraci H (2005) Breaking wave impact force on a vertical and inclined slender pile-theoretical and large-scale model investigations. Coast Eng 52(5):435–462

    Article  Google Scholar 

  3. Bjerrum A (2008) The Wave Star Energy concept. In: 2nd International Conference on Ocean Energy, Brest, France, 15–17 Oct 2008

  4. Goda Y (2008) Random seas and design of maritime structures. World Scientific, Singapore

  5. WAMIT, Inc. (2006) WAMIT user manual. WAMIT, Inc., Chestnut Hill (see http://www.wamit.com/manual.htm)

  6. Vantorre M, Banasiak R, Verhoeven R (2004) Modelling of hydraulic performance and wave energy extraction by a point absorber in heave. Appl Ocean Res 26:61–72

    Article  Google Scholar 

  7. Budal K, Falnes J, Iversen LC, Hals T, Onshus T (1981) Model experiment with a phase-controlled point absorber. In: 2nd International Symposium on Wave and Tidal Energy, Cambridge, UK, 23–25 September 1981, pp 191–206

  8. Babarit A, Duclos G, Clément AH (2004) Comparison of latching control strategies for a heaving wave energy device in random sea. Appl Ocean Res 26(5):227–238

    Article  Google Scholar 

  9. De Backer G, Vantorre M, Banasiak R, Beels C, De Rouck J (2007) Numerical modelling of wave energy absorption by a floating point absorber system. In: 17th International Offshore and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2007

  10. De Backer G, Vantorre M, Banasiak R, De Rouck J, Beels C, Verhaeghe H (2007) Performance of a point absorber heaving with respect to a floating platform. In: 7th Eur Wave and Tidal Energy Conference, Porto, Portugal, 11–14 Sept 2007

  11. von Karman T (1929) The impact of seaplane floats during landing (Tech Rep 321). National Advisory Committee for Aeronautics, Washington

  12. Wagner H (1932) Über stoss- und gleitvorgänge an der oberfläche von flüssigkeiten. Z Angew Math Mech 12:193–215

    Google Scholar 

  13. Malleron N, Scolan Y-M, Korobkin AA (2007) Some aspects of a generalized Wagner model. In: 22nd IWWWFB, Plitvice, Croatia, 15–18 April 2007, pp 137–140

  14. Chuang SL (1969) Theoretical investigations on slamming of cone-shaped bodies. J Ship Res 13:276–283

    Google Scholar 

  15. Toyama Y (1996) Flat plate approximation in the three-dimensional slamming (in Japanese). J Soc Naval Architects Jpn 179:271–279

    Google Scholar 

  16. Faltinsen OM, Zhao R (1997) Water entry of ship sections and axisymmetric bodies (Tech Rep 818). In: AGARD FDP and Ukraine Institute of Hydromechanics Workshop on High Speed Body Motion in Water, Kiev, Ukraine, 1–3 Sept 1997

  17. Scolan Y-M, Korobkin AA (2001) Three-dimensional theory of water impact. Part 1. Inverse Wagner problem. J Fluid Mech 440:293–326

    Article  MATH  MathSciNet  Google Scholar 

  18. Oger G, Doring M, Leroyer A, Alessandrini B, Visonneau M (2004) SPH and finite volume simulations of a wedge water entry. In: 14th International Offshore and Polar Eng Conference, vol 4, Toulon, France, 23–28 May 2004, pp 554–560

  19. Constantinescu A, Bertram V, Fuiorea I, Neme A (2005) Wedge-shaped shell structure impacting a water surface. In: ASME Pressure Vessels and Piping Conference, vol 4, Denver, CO, 17–21 July 2005, pp 55–62

  20. Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  21. Leroyer A, Hay A, Visonneau M (2007) Flow/motion interaction using a Navier–Stokes solver with automatic local grid refinement; application to slamming (in French). Mecanique Industries 8:151–160

    Article  Google Scholar 

  22. Vandamme J, Zou Q, Reeve D, Zhang Y (2009) Modelling the movement and wave impact of a floating object using SPH. In: 8th Eur Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 Sept 2009, pp 646–653

  23. De Backer G, Vantorre M, Victor S, De Rouck J, Beels C (2008) Investigation of vertical slamming on point absorbers. In: 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 15–20 June 2008

  24. De Backer G, Vantorre M, Beels C, De Pré J, Victor S, De Rouck J, Blommaert C, Van Paepegem W (2009) Experimental investigation of water impact on axisymmetric bodies. Appl Ocean Res 31:143–156

  25. Shiffman M, Spencer DC (1951) The force of impact on a cone striking a water surface. Comm Pure Appl Math 4:379–417

    Article  MATH  MathSciNet  Google Scholar 

  26. Battistin D, Iafrati A (2003) Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies. J Fluids Struct 17(5):643–664

    Article  Google Scholar 

  27. Miloh T (1991) On the initial-stage slamming of a rigid sphere in a vertical water entry. Appl Ocean Res 13(1):34–48

    Article  Google Scholar 

  28. Zhao R, Faltinsen OM, Aarsnes J (1996) Water entry of arbitrary two-dimensional sections with and without flow separation. In: Proceedings of 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, 24–28 June 1996, pp 408–423

  29. Zhao R, Faltinsen OM (1998) Water entry of arbitrary axisymmetric bodies with and without flow separation. In: Proceedings of 22nd Symposium on Naval Hydrodynamics, Washington, DC, 9–14 Aug 1998

  30. Faltinsen OM, Chezhian M (2005) A generalized Wagner method for three-dimensional slamming. J Ship Res 24(4):279–287

    Google Scholar 

  31. Moghisi M, Squire PT (1981) An experimental investigation of the initial force of impact on a sphere striking a liquid surface. J Fluid Mech 108:133–146

    Article  Google Scholar 

  32. Faltinsen OM (2000) Hydroelastic slamming. J Mar Sci Technol 5:49–65

    Article  Google Scholar 

  33. Scolan Y-M (2004) Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid. J Sound Vib 277:163–203

    Article  Google Scholar 

  34. Cummins WE (1962) The impulse response function and ship motions. Schiffstechnik (9):101–109

    Google Scholar 

  35. Duclos G, Clément AH, Chatry G (2001) Absorption of outgoing waves in a numerical wave tank using a self-adaptive boundary condition. Int J Offshore Polar Eng 11(3):168–175

    Google Scholar 

  36. De Backer G, Vantorre M, De Beule K, Beels C, De Rouck J (2009) Experimental investigation of the validity of linear theory to assess the behaviour of a heaving point absorber at the Belgian continental shelf. In: 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, HI, 31 May–5 June 2009

  37. Shiffman M, Spencer DC (1945) The force of impact on a sphere striking a water surface (Applied Math Panel, National Defense Research Committee, Rep No. 105). Applied Mathematics Group, New York University, New York

Download references

Acknowledgments

This research was funded by a Ph.D. grant from the Institute of Promotion of Innovation Through Science and Technology in Flanders (IWT-Vlaanderen), Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Vantorre.

About this article

Cite this article

De Backer, G., Vantorre, M., Frigaard, P. et al. Bottom slamming on heaving point absorber wave energy devices. J Mar Sci Technol 15, 119–130 (2010). https://doi.org/10.1007/s00773-010-0083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-010-0083-0

Keywords

Navigation