Skip to main content
Log in

Osteocalcin, but not deoxypyridinoline, increases in response to isoflurane-induced anaesthesia in young female guinea pigs

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The effect of the inhaled anaesthetic isoflurane was investigated on bone biomarkers, both during maturation and on minerals and glucose postpartum. Female guinea pigs (n = 10) were anaesthetized during maturation (5 and 9 weeks) and postpartum (26 weeks of age) with isoflurane during dual-energy X-ray absorptiometry scanning. Blood collection was performed at all ages before and after anaesthesia for measurement of plasma osteocalcin (OC), total deoxypyridinoline (tDPD), and cortisol. Postpartum measurements also included: blood ions, acid–base parameters and glucose, plasma minerals, total alkaline phosphatase (tALP), and albumin. Plasma OC concentration almost doubled after exposure to isoflurane at 5 weeks (30.1 ± 5.0–57.9 ± 11.2 nmol/L, p < 0.001) and at 9 weeks (29.1 ± 7.5–62.9 ± 15.9 nmol/L, p < 0.001), but did not change postpartum (3.7 ± 3.3–4.3 ± 3.9 nmol/L, p = 0.88). There was no effect of isoflurane exposure on plasma tDPD at any age. Plasma cortisol increased after exposure to isoflurane at 9 weeks (1859.6 ± 383.2–2748.0 ± 235.3 nmol/L, p < 0.01) and postpartum (3376.7 ± 322.2–4091.6 ± 195.6 nmol/L, p < 0.001) but not at 5 weeks (2088.3 ± 326.4–2464.1 ± 538.0 nmol/L, p > 0.05). Blood ionized Ca2+, Na+ and plasma total Ca did not change, whereas plasma albumin decreased, and inorganic phosphate (PO4) and Cl increased upon exposure to isoflurane. Isoflurane decreased tALP (43.2 ± 6.6–40.2 ± 5.9 IU/L, p = 0.01) and increased glucose (7.5 ± 0.6–10.9 ± 1.7 mmol/L, p < 0.0001) postpartum. Isoflurane inflates the assessment of a bone-derived biomarker, OC, during rapid growth, but not following pregnancy when formation is very low. Measurements prior to anaesthesia are recommended to reflect normal metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deckardt K, Weber I, Kaspers U, Hellwig J, Tennekes H, van Ravenzwaay B (2007) The effects of inhalation anaesthetics on common clinical pathology parameters in laboratory rats. Food Chem Toxicol 45:1709–1718

    Article  CAS  PubMed  Google Scholar 

  2. Chassagne MC, Descotes J, Héritier-Pingeon B, Forichon A, Garnier F, Burnett R (2000) A comparison of the effects of repeated anaesthesia with ether or isoflurane in rats. Comp Hematol Int 10:126–131

    Article  CAS  Google Scholar 

  3. Grafenau P, Eicher R, Uebelhart B, Tschudi P, Lepage OM (1999) General anaesthesia decreases osteocalcin plasma concentrations in horses. Equine Vet J 31:533–536

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson G, Bryant AE, Macdonald IA, Hall GM (2002) Osteocalcin and the hormonal, inflammatory and metabolic response to major orthopaedic surgery. Anaesthesia 57:319–325

    Article  CAS  PubMed  Google Scholar 

  5. Hotchkiss CE, Brommage R, Du M, Jerome CP (1998) The anesthetic isoflurane decreases ionized calcium and increases parathyroid hormone and osteocalcin in cynomolgus monkeys. Bone 23:479–484

    Article  CAS  PubMed  Google Scholar 

  6. Lee NK, Karsenty G (2008) Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 19:161–166

    Article  CAS  PubMed  Google Scholar 

  7. Loepke AW, McCann JC, Kurth CD, McAuliffe JJ (2006) The physiologic effects of isoflurane anesthesia in neonatal mice. Anesth Analg 102:75–80

    Article  CAS  PubMed  Google Scholar 

  8. Rummens K, Bree R, Herck E, Zaman Z, Bouillon R, Assche FA, Verhaeghe J (2002) Vitamin D deficiency in guinea pigs: exacerbation of bone phenotype during pregnancy and disturbed fetal mineralization, with recovery by 1,25(OH)2D3 infusion or dietary calcium-phosphate supplementation. Calcif Tissue Int 71:364–375

    Article  CAS  PubMed  Google Scholar 

  9. Finch SL, Rauch F, Weiler HA (2010) Postnatal vitamin D supplementation following maternal dietary vitamin D deficiency does not affect bone mass in weanling guinea pigs. J Nutr 140:1574–1581

    Article  CAS  PubMed  Google Scholar 

  10. Rummens K, Herck EV, Bree R, Bouillon R, Van Assche FA, Verhaeghe J (2000) Dietary calcium and phosphate restriction in guinea-pigs during pregnancy: fetal mineralization induces maternal hypocalcaemia despite increased 1,25-dihydroxycholecalciferol concentrations. Br J Nutr 84:495–504

    CAS  PubMed  Google Scholar 

  11. Verhaeghe J, Thomasset M, Van Assche FA, Bouillon R (1990) Osteocalcin is vitamin D-dependent during the perinatal period in the rat. J Dev Physiol 14:311–317

    CAS  PubMed  Google Scholar 

  12. Preston AM, Dowdy RP, Preston MA, Freeman JN (1976) Effect of dietary chromium on glucose tolerance and serum cholesterol in guinea pigs. J Nutr 106:1391–1397

    CAS  PubMed  Google Scholar 

  13. Kind KL, Clifton PM, Grant PA, Owens PC, Sohlstrom A, Roberts CT, Robinson JS, Owens JA (2003) Effect of maternal feed restriction during pregnancy on glucose tolerance in the adult guinea pig. Am J Physiol Regul Integr Comp Physiol 284:R140–R152

    Article  CAS  PubMed  Google Scholar 

  14. Olfert ED, Cross BM, McWilliam AA (1993) Guide to the care and use of experimental animals. Canadian Council on Animal Care, 2nd edn. Bradda Printing Services Inc., Ottawa

    Google Scholar 

  15. Jackson BF, Blumsohn A, Goodship AE, Wilson AM, Price JS (2003) Circadian variation in biochemical markers of bone cell activity and insulin-like growth factor-I in two-year-old horses. J Anim Sci 81:2804–2810

    CAS  PubMed  Google Scholar 

  16. Ndiaye B, Cournot G, Pélissier M-A, Debray OW, Lemonnier D (1995) Rat serum osteocalcin concentration is decreased by restriction of energy intake. J Nutr 125:1283–1290

    CAS  PubMed  Google Scholar 

  17. Dressen PJ, Wimsatt J, Burkhard MJ (1999) The effects of isoflurane anesthesia on hematologic and plasma biochemical values of American kestrels (Falco sparverius). J Avian Med Surg 13:173–179

    Google Scholar 

  18. Lepage OM, Marcoux M, Tremblay A (1990) Serum osteocalcin or bone Gla-protein, a biochemical marker for bone metabolism in horses: differences in serum levels with age. Can J Vet Res 54:223–226

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Kovacs CS (2001) Calcium and bone metabolism in pregnancy and lactation. J Clin Endocrinol Metab 86:2344–2348

    CAS  PubMed  Google Scholar 

  20. Patterson-Buckendahl P, Kvetnansky R, Fukuhara K, Cizza G, Cann C (1995) Regulation of plasma osteocalcin by corticosterone and norepinephrine during restraint stress. Bone 17:467–472

    Article  CAS  PubMed  Google Scholar 

  21. Michel CL, Chastel O, Bonnet X (2011) Ambient temperature and pregnancy influence cortisol levels in female guinea pigs and entail long-term effects on the stress response of their offspring. Gen Comp Endocrinol 171:275–282

    Article  CAS  PubMed  Google Scholar 

  22. le Roux CW, Chapman GA, Kong WM, Dhillo WS, Jones J, Alaghband-Zadeh J (2003) Free cortisol index is better than serum total cortisol in determining hypothalamic-pituitary-adrenal status in patients undergoing surgery. J Clin Endocrinol Metab 88:2045–2048

    Article  PubMed  Google Scholar 

  23. Schopper H, Palme R, Ruf T, Huber S (2011) Chronic stress in pregnant guinea pigs (Cavia aperea f. porcellus) attenuates long-term stress hormone levels and body weight gain, but not reproductive output. J Comp Physiol B 181:1089–1100

    Article  PubMed  Google Scholar 

  24. Gonzalez-Gil A, Silvan G, Garcia-Partida P, Illera JC (2006) Serum glucocorticoid concentrations after halothane and isoflurane anaesthesia in New Zealand white rabbits. Vet Rec 159:51–52

    Article  CAS  PubMed  Google Scholar 

  25. Krieger NS, Frick KK, Bushinsky DA (2002) Cortisol inhibits acid-induced bone resorption in vitro. J Am Soc Nephrol 13:2534–2539

    Article  CAS  PubMed  Google Scholar 

  26. Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328

    Article  CAS  PubMed  Google Scholar 

  27. Godschalk MF, Downs RW (1988) Effect of short-term glucocorticoids on serum osteocalcin in healthy young men. J Bone Miner Res 3:113–115

    Article  CAS  PubMed  Google Scholar 

  28. Meeran K, Hattersley A, Burrin J, Shiner R, Ibbertson K (1995) Oral and inhaled corticosteroids reduce bone formation as shown by plasma osteocalcin levels. Am J Respir Crit Care Med 151:333–336

    Article  CAS  PubMed  Google Scholar 

  29. Peretz A, Praet JP, Bosson D, Rozenberg S, Bourdoux P (1989) Serum osteocalcin in the assessment of corticosteroid-induced osteoporosis. Effect of long and short-term corticosteroid treatment. J Rheumatol 16:363–367

    CAS  PubMed  Google Scholar 

  30. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820

    Article  CAS  PubMed  Google Scholar 

  31. Ivaska KK, Hentunen TA, Vääräniemi J, Ylipahkala H, Pettersson K, Väänänen HK (2004) Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 279:18361–18369

    Article  CAS  PubMed  Google Scholar 

  32. Gil AG, Silvan G, Villa A, Millan P, Martinez-Fernandez L, Illera JC (2010) Serum biochemical response to inhalant anesthetics in New Zealand white rabbits. J Am Assoc Lab Anim Sci 49:52–56

    PubMed Central  PubMed  Google Scholar 

  33. Szczesny G, Veihelmann A, Massberg S, Nolte D, Messmer K (2004) Long-term anaesthesia using inhalatory isoflurane in different strains of mice-the haemodynamic effects. Lab Anim 38:64–69

    Article  CAS  PubMed  Google Scholar 

  34. Zuurbier CJ, Emons VM, Ince C (2002) Hemodynamics of anesthetized ventilated mouse models: aspects of anesthetics, fluid support, and strain. Am J Physiol Heart Circ Physiol 282:2099–2105

    Article  Google Scholar 

  35. Tanaka H, Igarashi T, Lefor AT, Kobayashi E (2009) The effects of fasting and general anesthesia on serum chemistries in KCG miniature pigs. J Am Assoc Lab Anim Sci 48:33–38

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Halbhuber KJ, Gossrau R, Möller U, Zimmermann N (1988) Light-microscopic histochemistry of non-specific alkaline phosphatase using lanthanide-citrate complexes. Histochemistry 90:67–72

    Article  CAS  PubMed  Google Scholar 

  37. Muir WW, Kijtawornrat A, Ueyama Y, Radecki SV, Hamlin RL (2011) Effects of intravenous administration of lactated Ringer’s solution on hematologic, serum biochemical, rheological, hemodynamic, and renal measurements in healthy isoflurane-anesthetized dogs. J Am Vet Med Assoc 239:630–637

    Article  CAS  PubMed  Google Scholar 

  38. Hursh D, Gelman S, Bradley EL (1987) Hepatic oxygen supply during halothane or isoflurane anesthesia in guinea pigs. Anesthesiology 67:701–706

    Article  CAS  PubMed  Google Scholar 

  39. Weinreb M, Shinar D, Rodan GA (1990) Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. J Bone Miner Res 5:831–842

    Article  CAS  PubMed  Google Scholar 

  40. Evans GO (ed) (2009) Animal clinical chemistry. In: A practical handbook for toxicologists and biochemical researchers, 2nd edn. CRC Press, Boca Raton, Florida, p 324

  41. Tanaka K, Kawano T, Tsutsumi YM, Kinoshita M, Kakuta N, Hirose K, Kimura M, Oshita S (2011) Differential effects of propofol and isoflurane on glucose utilization and insulin secretion. Life Sci 88:96–103

    Article  CAS  PubMed  Google Scholar 

  42. Oyama T, Latto P, Holaday DA (1975) Effect of isoflurane anaesthesia and surgery on carbohydrate metabolism and plasma cortisol levels in man. Can Anaesth Soc J 22:696–702

    Article  CAS  PubMed  Google Scholar 

  43. Van Herck H, Baumans V, Brandt CJ, Boere HA, Hesp AP, van Lith HA, Schurink M, Beynen AC (2001) Blood sampling from the retro-orbital plexus, the saphenous vein and the tail vein in rats: comparative effects on selected behavioural and blood variables. Lab Anim 35:131–139

    Article  PubMed  Google Scholar 

  44. Mahl A, Heining P, Ulrich P, Jakubowski J, Bobadilla M, Zeller W, Bergmann R, Singer T, Meister L (2000) Comparison of clinical pathology parameters with two different blood sampling techniques in rats: retrobulbar plexus versus sublingual vein. Lab Anim 34:351–361

    Article  CAS  PubMed  Google Scholar 

  45. Arnold M, Langhans W (2010) Effects of anesthesia and blood sampling techniques on plasma metabolites and corticosterone in the rat. Physiol Behav 99:592–598

    Article  CAS  PubMed  Google Scholar 

  46. Chen L, Li Q, Yang Z, Ye Z, Huang Y, He M, Wen J, Wang X, Lu B, Hu J, Liu C, Ling C, Qu S, Hu R (2013) Osteocalcin, glucose metabolism, lipid profile and chronic low-grade inflammation in middle-aged and elderly Chinese. Diabet Med 30:309–317

    Article  CAS  PubMed  Google Scholar 

  47. Garanty-Bogacka B, Syrenicz M, Rac M, Krupa B, Czaja-Bulsa G, Walczak M, Sowinska-Przepiera E, Syrenicz A (2013) Association between serum osteocalcin, adiposity and metabolic risk in obese children and adolescents. Endokrynol Pol 64:346–352

    Article  CAS  PubMed  Google Scholar 

  48. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Bar-Ilan A, Marder J (1980) Acid–base status in unanesthetized, unrestrained guinea pigs. Pflugers Arch 384:93–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NT contributed in the design of this study by performing biochemical assessments, interpretation of data, statistical analyses, and article writing. CR and RK performed critical reviews of the manuscript and provided helpful comments on the interpretation of results. RK is in receipt of the Canadian Institutes of Health Research MT10839. HW contributed to the original thought and design of this study and undertook supervision of the biomarker measures and critical review of the manuscript. She is in receipt of a CRC (Canada Research Chair) tier II in Nutrition, Development and Aging, and acknowledges CFI (Canadian Foundation for Innovation) infrastructure support for the DXA. Dr. Weiler wrote the grant along with CR, RK, and NT, which was approved and funded by CIHR (Canadian Institutes of Health Research). Acknowledgements are also given to Sherry Agellon for biochemical assessment of cortisol levels and Nandita Perumal for her assistance during this animal study at the School of Dietetic and Human Nutrition at McGill University.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hope A. Weiler.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, N., Rodd, C.J., Kremer, R. et al. Osteocalcin, but not deoxypyridinoline, increases in response to isoflurane-induced anaesthesia in young female guinea pigs. J Bone Miner Metab 33, 253–260 (2015). https://doi.org/10.1007/s00774-014-0593-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0593-7

Keywords

Navigation