Skip to main content
Log in

Fast cadmium inhibition of photosynthesis in cyanobacteria in vivo and in vitro studies using perturbed angular correlation of γ-rays

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of cadmium on the photosynthetic activity of Synechocystis PCC 6803 was monitored in this study. The oxygen evolving capacity of Synechocystis treated with 40 μM CdCl2 was depressed to 10% of the maximum in 15 min, indicating that Cd2+ penetrated rapidly into the cells and blocked the photosynthetic activity. However, neither photosystem II (PSII) nor photosystem I (PSI) activity showed a significant short-term decrease which would explain this fast decrease in the whole-chain electron transport. Thermoluminescence measurements have shown that the charge separation and stabilization in PSII remains essentially unchanged during the first few hours following the Cd2+ treatment. The electron flow through PSI was monitored by following the redox changes of the P700 reaction centers of PSI. Alterations in the oxidation kinetics of P700 in the Cd2+-treated cells indicated that Cd2+ treatment might affect the available electron acceptor pool of P700, including the CO2 reduction and accumulation in the cells. Perturbed angular correlation of γ-rays (PAC) using the radioactive 111mCd isotope was used to follow the Cd2+ uptake at a molecular level. The most plausible interpretation of the PAC data is that Cd2+ is taken up by one or more Zn proteins replacing Zn2+ in Synechocystis PCC 6803. Using the radioactive 109Cd isotope, a protein of approximately 30 kDa that binds Cd2+ could be observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicate that Cd2+ might inactivate different metal-containing enzymes, including carbonic anhydrase, by replacing the zinc ion, which would explain the rapid and almost full inhibition of the photosynthetic activity in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BASIL:

Bauers axially symmetric independent ligands

CA:

Carbonic anhydrase

CCM:

Carbon-concentrating mechanism

EFG:

Electric field gradient

HEPES:

N-(2-Hydroxyethyl)piperazine)-N′-ethanesulfonic acid

NQI:

Nuclear quadrupole interaction

PAC:

Perturbed angular correlation of γ-rays

PAGE:

Polyacrylamide gel electrophoresis

PQ:

Plastoquinone

PSI:

Photosystem I

PSII:

Photosystem II

QB :

Reduced secondary quinine acceptor

Rubisco:

Ribulose bisphosphate carboxylase-oxygenase

SDS:

Sodium dodecyl sulfate

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Das P, Samantaray S, Rout GR (1997) Environ Pollut 98:29–36

    Article  PubMed  CAS  Google Scholar 

  2. Prasad MNV (1995) Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  3. Seregin IV, Ivanov VB (2001) Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  4. Ali G, Srivastava PS, Iqbal M (1998) Biol Plant 41:635–639

    Article  CAS  Google Scholar 

  5. Ali G, Srivastava PS, Iqbal M (2000) Biol Plant 43:599–601

    Article  CAS  Google Scholar 

  6. Carrier P, Baryla A, Havaux M (2003) Planta 216:939–950

    PubMed  CAS  Google Scholar 

  7. Di Cagno R, Guidi L, Stefani A, Soldatini GF (1999) New Phytol 144:65–71

    Article  CAS  Google Scholar 

  8. Ghorbanli M, Kaveh SH, Sepehr MF (1999) Photosynthetica 37:627–631

    Article  CAS  Google Scholar 

  9. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas M, del Rio LA (2001) J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  10. Vassilev A, Lidon FC, Matos MD, Ramalho JC, Yordanov I (2002) J Plant Nutr 25:2343–2360

    Article  CAS  Google Scholar 

  11. Atri N, Rai LC (2003) J Microbiol Biotechnol 13:544–551

    CAS  Google Scholar 

  12. Cheng SP, Ren F, Grosse W, Wu ZB (2002) Int J Phytoremediat 4:239–246

    Article  CAS  Google Scholar 

  13. Gorbunov MY, Gorbunova EA (1993) Russ J Plant Physiol 40:656–659

    Google Scholar 

  14. Prasad MNV, Malec P, Waloszek A, Bojko M, Strzalka K (2001) Plant Sci 161:881–889

    Article  CAS  Google Scholar 

  15. Siedlecka A, Baszynski T (1993) Physiol Plant 87:199–202

    Article  CAS  Google Scholar 

  16. Tumova E, Sofrova D (2002) Photosynthetica 40:103–108

    Article  CAS  Google Scholar 

  17. Vassilev A, Lidon F, Scotti P, Da Graca M, Yordanov I (2004) Biol Plant 48:153–156

    Article  CAS  Google Scholar 

  18. Plekhanov SE, Chemeris YK (2003) Biol Bull 30:506–511

    Article  CAS  Google Scholar 

  19. Greger M, Ogren E (1991) Physiol Plant 83:129–135

    Article  CAS  Google Scholar 

  20. Krupa Z (1999) Z Naturforsch C 54:723–729

    CAS  Google Scholar 

  21. Siedlecka A, Krupa Z (1999) Photosynthetica 36:321–331

    Article  CAS  Google Scholar 

  22. Bender J, Lee RF, Phillips P (1995) J Ind Microbiol 14:113–118

    Article  CAS  Google Scholar 

  23. El Enany EA, Issa AA (2000) Environ Toxicol Pharmacol 8:95–101

    Article  PubMed  CAS  Google Scholar 

  24. Inthorn D, Nagase H, Isaji Y, Hirata K, Miyamoto K (1996) J Ferment Bioeng 82:580–584

    Article  CAS  Google Scholar 

  25. Mohamed ZA (2001) Water Res 35:4405–4409

    Article  PubMed  CAS  Google Scholar 

  26. Prakasham RS, Ramakrishna SV (1998) J Sci Ind Res 57:258–265

    CAS  Google Scholar 

  27. Campanella L, Cubadda F, Sammartino MP, Saoncella A (2001) Water Res 35:69–76

    Article  PubMed  CAS  Google Scholar 

  28. Tonnina D, Campanella L, Sammartino MP, Visco G (2002) Ann Chim 92:477–484

    PubMed  CAS  Google Scholar 

  29. Allen MM (1968) J Phycol 4:1

    Article  CAS  Google Scholar 

  30. Demeter S, Vass I, Horvath G, Laufer A (1984) Biochim Biophys Acta 764:33–39

    Article  CAS  Google Scholar 

  31. Frauenfelder H, Steffen RM (1965) In: Siegbahn K (ed) α- β and γ-ray spectroscopy. North-Holland, Amsterdam, pp 997–1198

  32. Hemmingsen L, Sas KN, Danielsen E (2004) Chem Rev 104:4027–4061

    Article  PubMed  CAS  Google Scholar 

  33. Butz T (1989) Hyperfine Interact 52:189–228

    Article  CAS  Google Scholar 

  34. Butz T (1992) Correct Hyperfine Interact 73:387–388

    Article  Google Scholar 

  35. Danielsen E, Bauer R (1990) Hyperfine Interact 62:311–324

    Article  CAS  Google Scholar 

  36. Perrin F (1934) J Phys Radium 5:497–511

    Article  CAS  Google Scholar 

  37. Butz T, Saibene S, Fraenzke T, Weber M (1989) Nucl Instrum Methods Phys Res A 284:417–421

    Article  Google Scholar 

  38. Bauer R, Jensen SJ, Schmidt-Nielsen B (1988) Hyperfine Interact 39:203–234

    Article  CAS  Google Scholar 

  39. Demeter S, Vass I (1984) Biochim Biophys Acta 764:24–32

    Article  CAS  Google Scholar 

  40. Rutherford AW, Crofts AR, Inoue Y (1982) Biochim Biophys Acta 682:457–465

    Article  CAS  Google Scholar 

  41. Maxwell PC, Biggins J (1977) Biochim Biophys Acta 459:442–450

    Article  PubMed  CAS  Google Scholar 

  42. Yu L, Zhao JD, Muhlenhoff U, Bryant DA, Golbeck JH (1993) Plant Physiol 103:171–180

    PubMed  CAS  Google Scholar 

  43. Bonomi F, Iametti S, Kurtz DM, Ragg EM, Richie KA (1998) J Biol Inorg Chem 3:595–605

    Article  CAS  Google Scholar 

  44. Hartwig A (2001) Antioxid Redox Signal 3:625–634

    Article  PubMed  CAS  Google Scholar 

  45. Hartwig A, Asmuss M, Blessing H, Hoffmann S, Jahnke G, Khandelwal S, Pelzer A, Burkle A (2002) Food Chem Toxicol 40:1179–1184

    Article  PubMed  CAS  Google Scholar 

  46. Bonomi F, Ganadu ML, Lubinu G, Pagani S (1994) Eur J Biochem 222:639–644

    Article  PubMed  CAS  Google Scholar 

  47. Bauer R, Limkilde P, Johansen JT (1976) Biochemistry 15:334–341

    Article  PubMed  CAS  Google Scholar 

  48. Bauer R, Christensen C, Johansen JT, Bethune JL, Vallee BL (1979) Biochem Biophys Res Commun 90:679–685

    Article  PubMed  CAS  Google Scholar 

  49. Bauer R (1985) Q Rev Biophys 18:1–64

    Article  PubMed  CAS  Google Scholar 

  50. Hemmingsen L, Bauer R, Bjerrum MJ, Zeppezauer M, Adolph HW, Formicka G, Cedergren-Zeppezauer E (1995) Biochemistry 34:7145–7153

    Article  PubMed  CAS  Google Scholar 

  51. Rensing C, Ghosh M, Rosen BP (1999) J Bacteriol 181:5891–5897

    PubMed  CAS  Google Scholar 

  52. Kopera E, Schwerdtle T, Hartwig A, Bal A (2004) Chem Res Toxicol 17:1452–1458

    Article  PubMed  CAS  Google Scholar 

  53. Raven JA, Evans MCW, Korb RE (1999) Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  54. Lindskog S (1997) Pharmacol Ther 74:1–20

    Article  PubMed  CAS  Google Scholar 

  55. Moroney JV, Bartlett SG, Samuelsson G (2001) Plant Cell Environ 24:141–153

    Article  CAS  Google Scholar 

  56. Smith KS, Ferry JG (2000) FEMS Microbiol Rev 24:335–366

    Article  PubMed  CAS  Google Scholar 

  57. So AKC, Espie GS (2005) Can J Bot 83:721–734

    Article  CAS  Google Scholar 

  58. Kaplan A, Reinhold L (1999) Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  PubMed  CAS  Google Scholar 

  59. Badger MR (2003) Photosynth Res 77:83–94

    Article  PubMed  CAS  Google Scholar 

  60. Badger MR, Price GD (2003) J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  61. Hanson DT, Franklin LA, Samuelsson G, Badger MR (2003) Plant Physiol 132:2267–2275

    Article  PubMed  CAS  Google Scholar 

  62. Smith EC, Griffiths H (2000) New Phytol 145:29–37

    Article  CAS  Google Scholar 

  63. Thoms S, Pahlow M, Wolf-Gladrow DA (2001) J Theor Biol 208:295–313

    Article  PubMed  CAS  Google Scholar 

  64. Moskvin OV, Shutova TV, Khristin MS, Ignatova KL, Villarejo A, Samuelsson G, Klimov VV, Ivanov BN (2004) Photosynth Res 79:93–100

    Article  PubMed  CAS  Google Scholar 

  65. Stemler AJ (1997) Physiol Plant 99:348–353

    Article  CAS  Google Scholar 

  66. van Hunnik E, Sultemeyer D (2002) Funct Plant Biol 29:243–249

    Article  Google Scholar 

  67. Villarejo A, Shutova T, Moskvin O, Forssen M, Klimov VV, Samuelsson G (2002) EMBO J 21:1930–1938

    Article  PubMed  CAS  Google Scholar 

  68. So AKC, John-McKay M, Espie GS (2002) Planta 214:456–467

    Article  PubMed  CAS  Google Scholar 

  69. Aravind P, Prasad MNV (2004) J Anal Atom Spectrom 19:52–57

    Article  CAS  Google Scholar 

  70. Pawlik B, Skowronski T, Ramazanow Z, Gardestrom P, Samuelsson G (1993) Environ Exp Bot 33:331–337

    Article  CAS  Google Scholar 

  71. Lindskog S, Malmstrom BG (1962) J Biol Chem 237:1129–1137

    PubMed  CAS  Google Scholar 

  72. Lionetto MG, Caricato R, Erroi E, Giordano ME, Schettino T (2005) Int J Environ Anal Chem 85:895–903

    Article  CAS  Google Scholar 

  73. Wang B, Liu CQ, Wu Y (2005) Bull Environ Contam Toxicol 74:227–233

    Article  PubMed  CAS  Google Scholar 

  74. Vitale AM, Monserrat JM, Castilho P, Rodriguez EM (1999) Comp Biochem Phys C 122:121–129

    CAS  Google Scholar 

  75. Iverson TM, Alber BE, Kisker C, Ferry JG, Rees DC (2000) Biochemistry 39:9222–9231

    Article  PubMed  CAS  Google Scholar 

  76. Mitsuhashi S, Mizushima T, Yamashita E, Yamamoto M, Kumasaka T, Moriyama H, Ueki T, Miyachi S, Tsukihara T (2000) J Biol Chem 275:5521–5526

    Article  PubMed  CAS  Google Scholar 

  77. Bauer R (1976) PhD thesis

  78. Bauer R, Limkilde P, Johansen JT (1977) Carlberg Res Commun 42:325–339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marianne Lund Jensen for technical assistance. We thank also Anna Haldrup and Poul Erik Jensen for their help with biochemical facilities. This project was supported by the Danish Technical Research Council (9901473), the EU Research Training Network “Transient” (HPRN-CT-1999-00095) and the Hungarian Science Foundation OTKA (T 034188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Nárcisz Sas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sas, K.N., Kovács, L., Zsίros, O. et al. Fast cadmium inhibition of photosynthesis in cyanobacteria in vivo and in vitro studies using perturbed angular correlation of γ-rays. J Biol Inorg Chem 11, 725–734 (2006). https://doi.org/10.1007/s00775-006-0113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0113-x

Keywords

Navigation