Skip to main content
Log in

An investigation of the peroxidase activity of Vitreoscilla hemoglobin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In order to investigate the ability of the Vitreoscilla hemoglobin (VHb) to act as a peroxidase, the protein was overexpressed in Escerichia coli and purified using a 6xHis-tag. The peroxidase activity of VHb was studied using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferrocene carboxylic acid (FcCOOH) dopamine and l-dopa as substrates. The effects of external agents such as pH, salt concentration/ionic strength, and the thermal stability of VHb on the catalytic activity were assessed. The optimum pH for VHb using ABTS as a substrate was estimated to be 6–7. The VHb protein proved to be stable up to 80 °C, as judged by its peroxidase activity. Furthermore, NaCl concentrations up to 100 mM did not exert any significant effect on the activity. The catalytic activity against ABTS and FcCOOH was similar to that measured for horseradish peroxidase, whereas in the case of the phenolic substrates dopamine and l-dopa the activity was several orders of magnitude lower. The Michaelis constants, \( {\mathop K\nolimits_{\text{m}}^{{\text{H}}_{2} {\text{O}}_{2} } }, \) were in good agreement with the data for human and bovine hemoglobin. No activity could be detected for the negative controls lacking VHb. These results demonstrate that VHb exhibits peroxidase activity, a finding in line with the hypothesis that VHb has cellular functions beyond the role as an oxygen carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABTS :

2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)

FcCOOH:

Ferrocene carboxylic acid

Hb:

Hemoglobin

IMAC:

Immobilized metal ion affinity chromatography

IPTG:

Isopropyl-β-d-thiogalactopyranoside

Mb:

Myoglobin

PCR:

Polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Tris–HCl:

Tris(hydroxymethyl)aminomethane buffer adjusted with hydrogen chloride

VHb:

Vitreoscilla hemoglobin

References

  1. Frey AD, Kallio PT (2003) FEMS Microbiol Rev 27:525–545

    Article  PubMed  CAS  Google Scholar 

  2. George P (1953) Biochem J 54:267–271

    PubMed  CAS  Google Scholar 

  3. King NK, Winfield ME (1963) J Biol Chem 238:1520–1528

    PubMed  CAS  Google Scholar 

  4. Grisham MB, Everse J (1991) In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology, vols 1–2. CRC, Boca Raton, pp 335–344

  5. George P, Irvine DH (1952) Biochem J 52:511–517

    PubMed  CAS  Google Scholar 

  6. Reeder BJ, Wilson MT (2005) Curr Med Chem 12:2741–2751

    Article  PubMed  CAS  Google Scholar 

  7. Meunier B (2004) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II. Elsevier, Oxford, pp 261–280

  8. Tappel AL (1955) J Biol Chem 217:721–733

    PubMed  CAS  Google Scholar 

  9. Sadrzadeh SMH, Graf E, Panter SS, Hallaway PE, Eaton JW (1984) J Biol Chem 259:14354–14356

    PubMed  CAS  Google Scholar 

  10. Harel S, Kanner J (1988) Free Radical Res Commun 5:21–33

    CAS  Google Scholar 

  11. Dunford HB (1999) Heme peroxidases. Wiley, New York

    Google Scholar 

  12. Coulson AFW, Erman JE, Yonetani T (1971) J Biol Chem 246:917–924

    PubMed  CAS  Google Scholar 

  13. Miller VP, Goodin DB, Friedman AE, Hartmann C, Ortiz de Montellano PR (1995) J Biol Chem 270:18413–18419

    Article  PubMed  CAS  Google Scholar 

  14. Giulivi C, Davies KJA (1990) J Biol Chem 265:19453–19460

    PubMed  CAS  Google Scholar 

  15. Everse J, Johnson MC, Marini MA (1994) Methods Enzymol 231:547–561

    Article  PubMed  CAS  Google Scholar 

  16. De Jesus-Bonilla W, Cortes-Figueroa JE, Souto-Bachiller FA, Rodrigues L, Lopez-Garriga J (2001) Arch Biochem Biophys 390:304–308

    Article  PubMed  CAS  Google Scholar 

  17. Matsui T, Ozaki S-I, Watanabe Y (1999) J Am Chem Soc 121:9952–9957

    Article  CAS  Google Scholar 

  18. Egawa T, Shimada H, Ishimura Y (2000) J Biol Chem 275:34858–34866

    Article  PubMed  CAS  Google Scholar 

  19. Hersleth HP, Ryde U, Rydberg P, Görbitz CH, Andersson KK (2006) J Inorg Biochem 100:460–476

    Article  PubMed  CAS  Google Scholar 

  20. Nilsson K, Hersleth HP, Rod TH, Andersson KK, Ryde U (2004) Biophys J 87:3437–3447

    Article  PubMed  CAS  Google Scholar 

  21. Wakabayashi S, Matsubara H, Webster DA (1986) Nature 322:481–483

    Article  PubMed  CAS  Google Scholar 

  22. Tarricone C, Galizzi A, Coda A, Ascenzi P, Bolognesi M (1997) Structure 5:497–507

    Article  PubMed  CAS  Google Scholar 

  23. Bolognesi M, Boffi A, Coletta M, Mozzarelli A, Pesce A, Tarricone C, Ascenzi P (1999) J Mol Biol 291:637–650

    Article  PubMed  CAS  Google Scholar 

  24. Joshi M, Mande S, Dikshit K (1998) Appl Environ Microbiol 64:2220–2228

    PubMed  CAS  Google Scholar 

  25. Khosla C, Bailey JE (1988) Mol Gen Genet 214:158–161

    Article  PubMed  CAS  Google Scholar 

  26. Khosla C, Curtis JE, Bydalek P, Swartz JR, Bailey JE (1990) Bio/Technology 8:554–558

    Article  PubMed  CAS  Google Scholar 

  27. Frey AD, Farrés J, Bollinger CJT, Kallio TP (2002) Appl Environ Microbiol 68:4835–4840

    Article  PubMed  CAS  Google Scholar 

  28. Tsai PS, Nägeli M, Bailey JE (1996) Biotechnol Bioeng 49:151–160

    Article  CAS  PubMed  Google Scholar 

  29. Dikshit RP, Dikshit KL, Liu Y, Webster DA (1992) Arch Biochem Biophys 293:241–245

    Article  PubMed  CAS  Google Scholar 

  30. Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulys D, Hoch JA (1989) EMBO J 8:1615–1621

    PubMed  CAS  Google Scholar 

  31. Andersson CIJ, Holmberg N, Farrés J, Bailey JE, Bülow L, Kallio PT (2000) Biotechnol Bioeng 70:446–455

    Article  PubMed  CAS  Google Scholar 

  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  33. Verma S, Patel S, Kaur R, Chung Y, Duk BT, Dikshit K, Stark B, Webster D (2005) Biochem Biophys Res Commun 326:290–297

    Article  PubMed  CAS  Google Scholar 

  34. Bradford MM (1976) Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  35. Fuhrhop JH, Smith KM (1975) In: Smith KM (eds) Laboratory methods in porphyrins and metalloporphyrins. Elsevier, Amsterdam, pp 804–807

  36. Hoopes J, Dean J (2001) Anal Biochem 293:96–101

    Article  PubMed  CAS  Google Scholar 

  37. Adams PA (1990) J Chem Soc Perkin Trans 28:1407–1414

    Google Scholar 

  38. Goral VN, Ryabov AD (1998) Biochem Mol Biol Int 45:61–71

    PubMed  CAS  Google Scholar 

  39. Rodriguez-Lopez JN, Gilabert MA, Tudela J, Thorneley RNF, Garsia-Canovas F (2000) Biochemistry 39:13201–13209

    Article  PubMed  CAS  Google Scholar 

  40. Park K, Webster D, Stark B, Howard A, Kim K (2003) Plasmid 50:169–175

    Article  PubMed  CAS  Google Scholar 

  41. Ramandeep, Hwang KW, Raje M, Kim KJ, Stark BC, Dikshit KL, Webster DA (2001) J Biol Chem 276:24781–24789

    Article  PubMed  CAS  Google Scholar 

  42. Kaur R, Pathania R, Sharma V, Mande S, Dikshit K (2002) Appl Environ Microbiol 68:152–160

    Article  PubMed  CAS  Google Scholar 

  43. Giangiacomo L, Mattu M, Arcovito A, Bellenchi G, Bolognesi M, Ascenzi P, Boffi A (2001) Biochemistry 40:9311–9316

    Article  PubMed  CAS  Google Scholar 

  44. Lee S, Stark B, Webster D (2004) Biochem Biophys Res Commun 316:1101–1106

    Article  PubMed  CAS  Google Scholar 

  45. Fan C, Zhong J, Guan R, Li G (2003) Biochim Biophys Acta 1649:123–126

    PubMed  CAS  Google Scholar 

  46. Ryabov AD, Goral VN (1997) J Biol Inorg Chem 2:182–190

    Article  CAS  Google Scholar 

  47. Guex N, Pietsch MC (1997) Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  48. Kamal J, Behere D (2003) J Inorg Biochem 94:236–242

    Article  PubMed  CAS  Google Scholar 

  49. Zhang K, Cai R, Chen D, Mao L (2000) Anal Chem Acta 413:109–113

    Article  CAS  Google Scholar 

  50. Liu CY, Webster DA (1974) J Biol Chem 249:4261–4266

    PubMed  CAS  Google Scholar 

  51. Webster DA (1988) Adv Inorg Biochem 7:245–265

    PubMed  CAS  Google Scholar 

  52. Wang W, Noel S, Desmadril M, Gueguen J, Michon T (1999) J Biochem 340:329–336

    Article  CAS  Google Scholar 

  53. Zhu M, Huang X, Li J, Shen H (1997) Anal Chim Acta 357:261–267

    Article  CAS  Google Scholar 

  54. Dunford HB, Adeniran AJ (1986) Arch Biochem Biophys 251:536–542

    Article  PubMed  CAS  Google Scholar 

  55. Critchlow JE, Dunford HB (1972) J Biol Chem 247:3703–3713

    PubMed  CAS  Google Scholar 

  56. Casella L, Poli S, Gullotti M, Selvaggini C, Berighelli T, Marchesini A (1994) Biochemistry 33:6378–6386

    Article  Google Scholar 

  57. Hasinoff BB, Dunford HB (1970) Biochemistry 9:4930–4939

    Article  PubMed  CAS  Google Scholar 

  58. Ermler U, Siddiqui R, Cramm R, Friedrich B (1995) EMBO J 14:6067–6077

    PubMed  CAS  Google Scholar 

  59. Nagano S, Tanaka M, Ishimori K, Watanabe Y, Morishima I (1996) Biochemistry 35:14251–14258

    Article  PubMed  CAS  Google Scholar 

  60. Ilari A, Bonamore A, Farina A, Johnson K, Boffi A (2002) J Biol Chem 277:23725–23732

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) and the Swedish Research Council (VR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ebbe Nordlander or Leif Bülow.

Additional information

Malin Kvist and Ekaterina S. Ryabova contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2006_190_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvist, M., Ryabova, E.S., Nordlander, E. et al. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J Biol Inorg Chem 12, 324–334 (2007). https://doi.org/10.1007/s00775-006-0190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0190-x

Keywords

Navigation