Skip to main content
Log in

Nitrite reduction by xanthine oxidase family enzymes: a new class of nitrite reductases

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mammalian xanthine oxidase (XO) and Desulfovibrio gigas aldehyde oxidoreductase (AOR) are members of the XO family of mononuclear molybdoenzymes that catalyse the oxidative hydroxylation of a wide range of aldehydes and heterocyclic compounds. Much less known is the XO ability to catalyse the nitrite reduction to nitric oxide radical (NO). To assess the competence of other XO family enzymes to catalyse the nitrite reduction and to shed some light onto the molecular mechanism of this reaction, we characterised the anaerobic XO- and AOR-catalysed nitrite reduction. The identification of NO as the reaction product was done with a NO-selective electrode and by electron paramagnetic resonance (EPR) spectroscopy. The steady-state kinetic characterisation corroborated the XO-catalysed nitrite reduction and demonstrated, for the first time, that the prokaryotic AOR does catalyse the nitrite reduction to NO, in the presence of any electron donor to the enzyme, substrate (aldehyde) or not (dithionite). Nitrite binding and reduction was shown by EPR spectroscopy to occur on a reduced molybdenum centre. A molecular mechanism of AOR- and XO-catalysed nitrite reduction is discussed, in which the higher oxidation states of molybdenum seem to be involved in oxygen-atom insertion, whereas the lower oxidation states would favour oxygen-atom abstraction. Our results define a new catalytic performance for AOR—the nitrite reduction—and propose a new class of molybdenum-containing nitrite reductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Notes

  1. The pterin–molybdenum cofactor is still commonly referred to as “molybdopterin”, because, historically, the cofactor was first identified in molybdenum-containing enzymes. However, the same cofactor molecule is used to coordinate tungsten in some organisms that are able to utilise that element. To avoid confusion between molybdenum and tungsten-containing enzymes, the denomination “pterin–molybdenum cofactor”, proposed by the Nomenclature Committee of the International Union of Biochemistry (http://www.chem.qmul.ac.uk/iubmb/etp/) was chosen.

  2. Xanthine and uric acid represented in neutral form.

  3. Although the molecular mechanism of XO-catalysed hydroxylation has been established for xanthine [7, 12, 15, 16], the underlying mechanism of aldehyde hydroxylation [8] (or of other substrate that is hydroxylated at the molybdenum site, such as FYX-051 [15]) is thought to be essentially the same.

  4. For simplicity, xanthine (pK a of 0.8 and 7.4) is represented in the neutral form. Urate (pK a of 5.2 and 11.3) or carboxylate (pK a of 4.2 for benzoic acid) is depicted in the physiological monoanionic form.

Abbreviations

AOR:

Aldehyde oxidoreductase

DMSOR:

Dimethylsulfoxide reductase

EPR:

Electron paramagnetic resonance

Fe/S:

Iron–sulfur centre

Fe/S–NO:

Dinitrosyl–iron–sulfur complex

(MGD)2–Fe:

Ferrous complex of di(N-methyl-d-glucamine dithiocarbamate)

(MGD)2–Fe–NO:

Mononitrosyl–iron complex

Mo-enzymes:

Pterin–molybdenum-containing enzymes

NaR:

Nitrate reductases

NO:

Nitric oxide radical

SO:

Sulfite oxidase

XO:

Xanthine oxidase

References

  1. Hille R (2002) Trends Biochem Sci 27:360–367

    Article  PubMed  CAS  Google Scholar 

  2. Brondino CD, Rivas MG, Romão MJ, Moura JJG, Moura I (2006) Acc Chem Res 39:788–796

    Article  PubMed  CAS  Google Scholar 

  3. Schwarz G, Mendel RR, Ribbe MW (2009) Nature 460:839–847

    Article  PubMed  CAS  Google Scholar 

  4. Rivas MG, Carepo MS, Mota CS, Korbas M, Durand MC, Lopes AT, Brondino CD, Pereira AS, George GN, Dolla A, Moura JJ, Moura I (2009) Biochemistry 48:873–882

    Article  PubMed  CAS  Google Scholar 

  5. Bursakov SA, Gavel OY, Di Rocco G, Lampreia J, Calvete J, Pereira AS, Moura JJ, Moura I (2004) J Inorg Biochem 98:833–840

    Article  PubMed  CAS  Google Scholar 

  6. Hille R (1996) Chem Rev 96:2757–2816

    Article  PubMed  CAS  Google Scholar 

  7. Brondino CD, Romão MJ, Moura I, Moura JJ (2006) Curr Opin Chem Biol 10:109–114

    Article  PubMed  CAS  Google Scholar 

  8. Hille R (2005) Arch Biochem Biophys 433:107–116

    Article  PubMed  CAS  Google Scholar 

  9. Feng C, Tollin G, Enemark JH (2007) Biochim Biophys Acta 1774:527–539

    PubMed  CAS  Google Scholar 

  10. Rothery RA, Workun GJ, Weiner JH (2008) Biochim Biophys Acta 1778:1897–1929

    Article  PubMed  CAS  Google Scholar 

  11. Roy R, Adams MW (2002) Met Ions Biol Syst 39:673–697

    PubMed  CAS  Google Scholar 

  12. Hille R (2006) Eur J Inorg Chem 10:1913–1926

    Article  Google Scholar 

  13. Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF (2000) Proc Natl Acad Sci USA 97:10723–10728

    Article  PubMed  CAS  Google Scholar 

  14. Krenitsky TA, Neil SM, Elion GB, Hitchings GH (1972) Arch Biochem Biophys 150:585–599

    Article  PubMed  CAS  Google Scholar 

  15. Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T (2004) Proc Natl Acad Sci USA 101:7931–7936

    Article  PubMed  CAS  Google Scholar 

  16. Pauff JM, Zhang J, Bell CE, Hille R (2008) J Biol Chem 283:4818–4824

    Article  PubMed  CAS  Google Scholar 

  17. Dixon M, Thurlow S (1924) Biochem J 18:989–992

    PubMed  CAS  Google Scholar 

  18. Fridovich I, Handler P (1957) J Biol Chem 228:67–76

    PubMed  CAS  Google Scholar 

  19. Fridovich I, Handler P (1962) J Biol Chem 237:916–921

    PubMed  CAS  Google Scholar 

  20. Millar TM, Stevens CR, Benjamin N, Eisenthal R, Harrison R, Blake DR (1998) FEBS Lett 427:225–228

    Article  PubMed  CAS  Google Scholar 

  21. Li H, Samouilov A, Liu X, Zweier JL (2003) Biochemistry 42:1150–1159

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR, Symons MC (1998) Biochem Biophys Res Commun 249:767–772

    Article  PubMed  CAS  Google Scholar 

  23. Li H, Samouilov A, Liu X, Zweier JL (2001) J Biol Chem 276:24482–24489

    Article  PubMed  CAS  Google Scholar 

  24. Godber HLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) J Biol Chem 275:7757–7763

    Article  PubMed  CAS  Google Scholar 

  25. Li H, Samouilov A, Liu X, Zweier JL (2004) J Biol Chem 279:16939–16946

    Article  PubMed  CAS  Google Scholar 

  26. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Proc Natl Acad Sci USA 101:13683–13688

    Article  PubMed  CAS  Google Scholar 

  27. Baker JE, Sua J, Fua X, Hsub A, Gross GJ, Tweddell JS, Hogg N (2007) J Mol Cell Cardiol 43:437–444

    Article  PubMed  CAS  Google Scholar 

  28. Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL (2008) J Biol Chem 283:17855–17863

    Article  PubMed  CAS  Google Scholar 

  29. Garattini E, Fratelli M, Terao M (2008) Cell Mol Life Sci 65:1019–1048

    Article  PubMed  CAS  Google Scholar 

  30. Li H, Kundu TK, Zweier JL (2009) J Biol Chem 284:33850–33858

    Article  PubMed  CAS  Google Scholar 

  31. Lundberg JO, Weitzberg E (2005) Arterioscler Thromb Vasc Biol 25:915–922

    Article  PubMed  CAS  Google Scholar 

  32. Lundberg JO, Weitzberg E (2009) Arch Pharm Res 32:1119–1126

    Article  PubMed  CAS  Google Scholar 

  33. Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R, Nohl H, Rassaf T, Samouilov A, Slama-Schwok A, Shiva S, Vanin AF, Weitzberg E, Zweier JL, Gladwin MT (2009) Med Res Rev 29:683–741

    Article  PubMed  Google Scholar 

  34. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, Richter-Addo GB, Schechter A, Shiva S, Tsuchiya K, Faassen EE, Webb AJ, Zuckerbraun BS, Zweier JL, Weitzberg E (2009) Nat Chem Biol 5:865–869

    Article  PubMed  CAS  Google Scholar 

  35. Zweier JL, Li H, Samouilov A, Liu X (2010) Nitric Oxide 22:83–90

    Article  PubMed  CAS  Google Scholar 

  36. Rebelo JM, Dias JM, Huber R, Moura JJ, Romão MJ (2001) J Biol Inorg Chem 6:791–800

    Article  PubMed  CAS  Google Scholar 

  37. Santos-Silva T, Ferroni F, Thapper A, Marangon J, González PJ, Rizzi AC, Moura I, Moura JJ, Romão MJ, Brondino CD (2009) J Am Chem Soc 131:7990–7998

    Article  PubMed  CAS  Google Scholar 

  38. Krippahl L, Palma N, Moura I, Moura JJG (2006) Eur J Inorg Chem 19:3835–3840

    Article  Google Scholar 

  39. Turner N, Barata B, Bray RC, Deistung J, Le Gall J, Moura JJ (1987) Biochem J 243:755–761

    PubMed  CAS  Google Scholar 

  40. Massey V, Komai H, Palmer G, Elion GB (1970) J Biol Chem 245:2837–2844

    PubMed  CAS  Google Scholar 

  41. Cornish-Bowden A (1995) Fundamentals of enzyme kinetics. Portland Press, London

    Google Scholar 

  42. Xia Y, Zweier JL (1997) Proc Natl Acad Sci USA 94:12705–12710

    Article  PubMed  CAS  Google Scholar 

  43. Olson JS, Ballou DP, Palmer G, Massey V (1974) J Biol Chem 249:4363–4382

    PubMed  CAS  Google Scholar 

  44. Hunt J, Massey V (1994) J Biol Chem 269:18904–18914

    PubMed  CAS  Google Scholar 

  45. McDonald CC, Phillips WD, Mower HF (1965) J Am Chem Soc 87:3319–3326

    Article  CAS  Google Scholar 

  46. Woolum JC, Tiezzi E, Commoner B (1968) Biochim Biophys Acta 160:311–320

    PubMed  CAS  Google Scholar 

  47. Massey V, Edmondson D (1970) J Biol Chem 245:6595–6598

    PubMed  CAS  Google Scholar 

  48. Coughlan MP, Johnson JL, Rajagopalan KV (1980) J Biol Chem 255:2694–2699

    PubMed  CAS  Google Scholar 

  49. Hawkes TR, George G, Bray RC (1984) Biochem J 218:961–968

    PubMed  CAS  Google Scholar 

  50. Okamoto K, Egerb BT, Nishino T, Pai EF, Nishino T (2008) Nucleosides Nucleotides Nucleic Acids 27:888–893

    Article  PubMed  CAS  Google Scholar 

  51. Maia L, Duarte RO, Ponces-Freire A, Moura JJG, Mira L (2007) J Biol Inorg Chem 12:777–787

    Article  PubMed  CAS  Google Scholar 

  52. Lowe DJ, Barber MJ, Pawlik RT, Bray RC (1976) Biochem J 155:81–85

    PubMed  CAS  Google Scholar 

  53. Howes BD, Pinhal NM, Turner NA, Bray RC, Anger G, Ehrenberg A, Raynor JB, Lowe DJ (1990) Biochemistry 29:6120–6127

    Article  PubMed  CAS  Google Scholar 

  54. Gautier C, Faassen E, Mikula I, Martasek P, Slama-Schwok A (2006) Biochem Biophys Res Commun 341:816–821

    Article  PubMed  CAS  Google Scholar 

  55. Stiefel EI (1973) Proc Nat Acad Sci USA 70:988–992

    Article  PubMed  CAS  Google Scholar 

  56. Rajapakshe A, Snyder RA, Astashkin AV, Bernardson P, Evans DJ, Young CG, Evans DH, Enemark JH (2009) Inorg Chim Acta 362:4603–4608

    Article  CAS  Google Scholar 

  57. Holm RH (1987) Chem Rev 87:1401–1449

    Article  CAS  Google Scholar 

  58. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  PubMed  CAS  Google Scholar 

  59. Schultz BE, Hille R, Holm RH (1995) J Am Chem Soc 117:827–828

    Article  CAS  Google Scholar 

  60. Burgrnayer SJN, Stlefel EI (1985) J Chem Educ 62:943–953

    Article  Google Scholar 

  61. Harlan EE, Berg JM, Holm RH (1986) J Am Chem Soc 108:6992–7000

    Article  CAS  Google Scholar 

  62. Stamler JS, Lamas S, Fang FC (2001) Cell 106:675–683

    Article  PubMed  CAS  Google Scholar 

  63. Kone BC, Kuncewicz T, Zhang W, Yu ZY (2003) Am J Physiol Ren Physiol 285:178–190

    Google Scholar 

  64. Hille R, Massey V (1981) J Biol Chem 256:9090–9095

    PubMed  CAS  Google Scholar 

  65. Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W (2005) J Clin Invest 115:1232–1240

    PubMed  CAS  Google Scholar 

  66. Gusarov I, Nudler E (2005) Proc Natl Acad Sci USA 102:13855–13860

    Article  PubMed  CAS  Google Scholar 

  67. Gusarov I, Starodubtseva M, Wang Z, McQuade L, Lippard SJ, Stuehr DJ, Nudler E (2008) J Biol Chem 283:13140–13147

    Article  PubMed  CAS  Google Scholar 

  68. Moura JJG, Xavier AV, Bruschi M, Le Gall J, Hall DO, Cammack R (1976) Biochem Biophys Res Commun 72:782–789

    Article  PubMed  CAS  Google Scholar 

  69. Barata BA, LeGall J, Moura JJ (1993) Biochemistry 32:11559–11568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L.M. (SFRH/BPD/39036/2007) thanks Fundação para a Ciência e a Tecnologia, MCTES, for a fellowship grant. This work was supported by project PTDC/QUI-BIQ/100366/2008 financed by the Fundação para a Ciência e a Tecnologia, MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. G. Moura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, L.B., Moura, J.J.G. Nitrite reduction by xanthine oxidase family enzymes: a new class of nitrite reductases. J Biol Inorg Chem 16, 443–460 (2011). https://doi.org/10.1007/s00775-010-0741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0741-z

Keywords

Navigation