Skip to main content
Log in

DFT study of the mechanism of manganese quercetin 2,3-dioxygenase: quest for origins of enzyme unique nitroxygenase activity and regioselectivity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Quercetin 2,3-dioxygenase (QDO) is an enzyme which accepts various transition metal ions as cofactors, and cleaves the heterocyclic ring of quercetin with consumption of dioxygen and release of carbon monoxide. QDO from B. subtilis that binds Mn(II) displays an unprecedented nitroxygenase activity, whereby nitroxyl (HNO) is incorporated into quercetin cleavage products instead of dioxygen. Interestingly, the reaction proceeds with high regiospecificity, i.e., nitrogen and oxygen atoms of HNO are incorporated into specific fragments of the cleavage product. A nonenzymatic base-catalyzed reaction, which occurs in pH above 7.5, yields the same reaction products. Herein, we report results of quantum chemical studies on the mechanisms of the nitroxygenase reaction of Mn-QDO. Density functional method with dispersion correction (B3LYP-D3) was applied to the Mn-QDO active site model and the reactants of the nonenzymatic reaction. Co(II)- and Fe(II)-variants of the active site were also considered. Analysis of reaction energy profiles suggests that the regiospecificity of the reaction is an inherent property of the reactants, whereas the unique reactivity of Mn-QDO, as opposed to Co- or Fe-QDO that do not catalyze nitroxygenation, stems from weak HNO binding and lack of strong preference for coordination of HNO through the nitrogen atom. Moreover, the enzyme activates quercetin through deprotonation and the proton acceptor—Glu69 needs to reorient for the reaction to proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. van Acker SA, van den Berg DJ, Tromp MN, Griffioen DH, van Bennekom WP, van der Vijgh WJ, Bast A (1996) Free Radic Biol Med 20:331–342

    Article  PubMed  Google Scholar 

  2. Li M, Xu Z (2008) Arch Pharm Res 31:640–644

    Article  CAS  PubMed  Google Scholar 

  3. Plaper A, Golob M, Hafner I, Oblak M, Solmajer T, Jerala R (2003) Biochem Biophys Res Commun 306:530–536

    Article  CAS  PubMed  Google Scholar 

  4. Gellert M, Mizuuchi K, O’Dea MH, Nash HA (1976) Proc Natl Acad Sci USA 73:3872–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oka T, Simpson FJ (1971) Biochem Biophys Res Commun 43:1–5

    Article  CAS  PubMed  Google Scholar 

  6. Dunwell JM (1998) Biotechnol Genet Eng Rev 15:1–32

    Article  CAS  PubMed  Google Scholar 

  7. Bowater L, Fairhurst SA, Just VJ, Bornemann S (2004) FEBS Lett 557:45–48

    Article  CAS  PubMed  Google Scholar 

  8. Gopal B, Madan LL, Betz SF, Kossiakoff AA (2005) Biochemistry 2005(44):193–201

    Article  Google Scholar 

  9. Saito T, Kawakami T, Yamanaka S, Okumura M (2015) J Phys Chem B 119:6952–6962

    Article  CAS  PubMed  Google Scholar 

  10. Siegbahn PEM (2004) Inorg Chem 43:5944–5953

    Article  CAS  PubMed  Google Scholar 

  11. Kumar MR, Zapata A, Ramirez AJ, Bowen SK, Francisco WA, Farmer PJ (2011) Proc Natl Acad Sci 108:18926–18931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steiner RA, Kalk KH, Dijkstra BW (2002) Proc Natl Acad Sci USA 99:16625–16630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lemanska K, Szymusiak H, Tyrakowska B, Zieliński R, Soffers AE, Rietjens IM (2001) Free Radic Biol Med 31:869–881

    Article  CAS  PubMed  Google Scholar 

  14. Dutton AS, Fukuto JM, Houk KN (2005) Inorg Chem 44:4024–4028

    Article  CAS  PubMed  Google Scholar 

  15. Shafirovich V, Lymar SV (2002) Proc Natl Acad Sci USA 99:7340–7345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shafirovich V, Lymar SV (2003) J Am Chem Soc 125:6547–6552

    Article  CAS  PubMed  Google Scholar 

  17. Parr R, Yang W (1994) Density-functional theory of atoms and molecules international series of monographs on chemistry. Oxford University Press, USA

    Google Scholar 

  18. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  19. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  20. Hehre WJ, Ditchfield R, Pople J (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  21. Miertuš S, Scrocco JE, Tomasi (1981) Chem Phys 55:117–129

    Article  Google Scholar 

  22. Raghavachari K, Binkley J, Seeger R, Pople J (1980) J Chem Phys 72:650–654

    Article  Google Scholar 

  23. Frisch M, Pople J, Binkley J (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  24. Yamaguchi K, Fukui H, Fueno T (1986) Chem Lett 15:625–628

    Article  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford, CT

  26. Fukui KT, Yonezawa T, Shingu H (1952) J Chem Phys 20:722

    Article  CAS  Google Scholar 

  27. Parr R, Yang W (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  28. Han X, Kumar MR, Farmer PJ (2016) Tetrahedron Lett 57:399–402

    Article  CAS  Google Scholar 

  29. Marcus R, Sutin N (1985) Biochim Biophys Acta BBA Rev Bioenerg 811:265–322

    Article  CAS  Google Scholar 

  30. Schaab MR, Barney BM, Francisc WA (2006) Biochemistry 45:1009–1016

    Article  CAS  PubMed  Google Scholar 

  31. Matuz A, Giorgi M, Speier G, Kaizer J (2013) Polyhedron 63:41–49

    Article  CAS  Google Scholar 

  32. Shook RL, Gunderson WA, Greaves J, Ziller JW, Hendrich MP, Borovik AS (2008) J Am Chem Soc 130:8888–8889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Copeland DM, Soares AS, West AH, Richter-Addo GB (2006) J Inorg Biochem 100:1413–1425

    Article  CAS  PubMed  Google Scholar 

  34. Zahran ZN, Chooback L, Copeland DM, West AH, Richter-Addo GB (2008) J Inorg Biochem 102:216–233

    Article  CAS  PubMed  Google Scholar 

  35. Carducci MD, Pressprich MR, Coppens P (1997) J Am Chem Soc 119:2669–2678

    Article  CAS  Google Scholar 

  36. Morioka Y, Takeda S, Tomizawa H, Miki EI (1998) Chem Phys Lett 292:625–630 (cited By 15)

    Article  CAS  Google Scholar 

  37. Kurtikyan TS, Hovhannisyan AA, Hakobyan ME, Patterson JC, Iretskii A, Ford PC (2007) J Am Chem Soc 129:3576–3585

    Article  CAS  PubMed  Google Scholar 

  38. Berto TC, Lehnert N (2011) Inorg Chem 50:7361–7363

    Article  CAS  PubMed  Google Scholar 

  39. Perissinotti LL, Marti MA, Doctorovich F, Luque FJ, Estrin DA (2008) Biochemistry 47:9793–9802

    Article  CAS  PubMed  Google Scholar 

  40. Linder DP, Rodgers KR (2005) Inorg Chem 44:8259–8264

    Article  CAS  PubMed  Google Scholar 

  41. Merkens H, Kappl R, Jakob RP, Schmid FX, Fetzner S (2008) Biochemistry 47:12185–12196

    Article  CAS  PubMed  Google Scholar 

  42. Mbughuni MM, Chakrabarti M, Hayden JA, Bominaar EL, Hendrich MP, Münck E, Lipscomb JD (2010) Proc Natl Acad Sci USA 107:16788–16793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiang CW, Kleespies ST, Stout HD, Meier KK, Li PY, Bominaar EL, Que L Jr, Münck E, Lee WZ (2014) J Am Chem Soc 136:10846–10849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonner F, Hughes M (1988) Comments Inorg Chem 7:215–234

    Article  CAS  Google Scholar 

  45. Ruud K, Helgaker T, Uggerud E (1997) J Mol Struct (Thoechem) 393:59–71

    Article  CAS  Google Scholar 

  46. Sun YJ, Huang QQ, Li P, Zhang JJ (2015) Dalton Trans 44:13926–13938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mariusz Radoń for helpful suggestions. This research was supported in part by PL-Grid Infrastructure. This research project was supported by Grant No. UMO-2011/03/B/NZ1/04999 from the National Science Centre, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Borowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2016_1356_MOESM1_ESM.pdf

Two reaction paths investigating the role of switch of Glu69 H-bond and optimized Cartesian coordinates of all obtained stationary points are available

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojdyła, Z., Borowski, T. DFT study of the mechanism of manganese quercetin 2,3-dioxygenase: quest for origins of enzyme unique nitroxygenase activity and regioselectivity. J Biol Inorg Chem 21, 475–489 (2016). https://doi.org/10.1007/s00775-016-1356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1356-9

Keywords

Navigation