Skip to main content
Log in

Robust video communication for ubiquitous network access

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Ubiquitous network access implies that video can be streamed to portable devices whether they are moving outdoors or docked at home. Unfortunately, broadband wireless channels and their wired alternatives present a hostile environment for video communication, which manifests itself in error bursts. This paper presents a robust application layer, channel-coding scheme suitable for data-partitioned, compressed video. Data partitioning prioritizes the more important data within a compressed bitstream. In the scheme, the more important compressed data are protected prior to communication over an access network. In particular, window-growth rateless codes are used. This form of rateless code can be incrementally scaled to reflect the importance of the data being protected. The paper gives details of the scheme for achieving this in the context of an H.264/AVC codec’s picture types and structures. The paper considers how best to apply the scheme to H.264/AVC’s data-partitioning modes in a practical manner. Simulations of error-prone channels show that the proposed unequal protection scheme achieves several dBs of improvement in video quality, when compared with equal protection. The simulations modeled both wireless and wired access networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. An IDR picture is confusedly equivalent to an I-picture in previous standards. An I-picture in H.264/AVC allows predictive references beyond the boundary of a GoP.

  2. Because of the cumulative effect of VLC, symbols nearer the slice synchronization marker suffer less from errors than those that appear later in a bitstream.

References

  1. Afzal J, Stockhammer T, Gasiba T, Xu W (2006) Video streaming over MBMS: a system design approach. J Multimedia 1(5):25–35

    Google Scholar 

  2. Ahmad S, Hamzaoui R, Al-Akaidi M (2007) Robust live unicast video streaming with rateless codes. In: Proceedings of the 16th international packet video workshop, Lausanne, Switzerland, pp 78–84

  3. Albanese A, Blömer J, Edmonds J, Luby M, Sudan M (1996) Priority encoding transmission. IEEE Trans Inf Theory 42(6):1737–1744

    Article  MATH  Google Scholar 

  4. ANSI T1.413-1998 (1998) Network and customer installation interfaces—Asymmetric digital subscriber line (ADSL) Metallic interface. American National Standards Institute

  5. Bouabdullah A, Lacan J (2006) Dependency aware unequal erasure protection codes. J Ziezhang Univ 7:27–33

    Article  Google Scholar 

  6. Dhondt, Y, Mys, S, Vermeirsch, K, Van de Walle, R (2007) Constrained inter prediction: removing dependencies between different data partitions. In: Proceedings of advanced concepts for intelligent visual systems, pp 720–731

  7. Fathi H, Chakroborty SS, Prasad R (2008) Models for performance analysis in wireless networks. Voice over IP in wireless heterogeneous networks signalling, mobility, and security. Springer, Berlin, pp 49–57

    Google Scholar 

  8. Ghanbari M (1997) Two-layer coding of video signals for VBR networks. IEEE J Sel Areas Commun 7(5):771–781

    Article  Google Scholar 

  9. Ghanbari M (2003) Standard video codecs: image compression to advanced video coding. IET Publications, London

    Book  Google Scholar 

  10. Klaue J, Rathke B, Wolisz A (2003) EvalVid—A framework for video transmission and quality evaluation. In: Proceedings of international conference on modeling techniques and tools for computer performance, pp 255–272

  11. Kumar A (2007) Mobile TV: DVB-H, DMB, 3G systems and Rich media applications. Focal Press, Amsterdam

    Google Scholar 

  12. Lettieri P, Fragouli C, Srivastava MB (1997) Low power error control for wireless links. In: Proceedings of the 3rd annual ACM/IEEE international conference on mobile computing and networking, pp 139–150

  13. Liang YJ, Apostolopoulos JG, Girod B (2008) Analysis of packet loss for compressed video: effect of burst losses and correlation between error frames. IEEE Trans Circuits Syst Video Technol 18(7):861–874

    Article  Google Scholar 

  14. Luby M (2002) LT codes. In: Proceedings of the 34rd annual IEEE symposium on foundations of computer science, Vancouver, Canada, pp 271–280

  15. Luby M, Stockhammer T, Watson M (2008) Application layer FEC in IPTV systems. IEEE Commun Mag 46(5):94–101

    Article  Google Scholar 

  16. MacKay DJC (2005) Fountain codes. IEE Proc Commun 152(6):1062–1068

    Article  Google Scholar 

  17. Palanki R, Yedidai J (2004) Rateless codes on noisy channels. In: Proceedings of interantional symposium information theory

  18. Park S, Jeong S-H (2009) Mobile IPTV: approaches, challenges, standards and QoS support. IEEE Internet Comput 13(3):23–31

    Article  Google Scholar 

  19. Peng C, Tan Y, Xiong N, Yang D, Zhang H, Chao H-C et al (2009) Adaptive video-on-demand broadcasting in ubiquitous computing environment. Springer J Pers Ubiquitous Comput 13(7):479–488

    Article  Google Scholar 

  20. Rahnavard N, Vellambi BN, Fekri F (2007) Efficient broadcasting via rateless coding in multihop wireless networks with local information. In: Proceedings of the international wireless communications and mobile computing conference, Honolulu, Hawaii, pp 85–95

  21. Rahnavard N, Vellambi BN, Fekri F (2007) Rateless codes with unequal error protection property. IEEE Trans Inf Theory 53(4):1521–1532

    Article  MathSciNet  MATH  Google Scholar 

  22. Reponen E, Huuskonen P, Mihalic K (2008) Primary and secondary context in mobile video communication. Springer J Pers Ubiquitous Comput 12(4):281–288

    Article  Google Scholar 

  23. Robinson S, Eslambolchilar P, Jones M (2010) Exploring casual point-and-tilt interactions for mobile geo-blogging. Springer J Pers Ubiquitous Comput 14(4):363–379

    Article  Google Scholar 

  24. Shokorallahi A (2006) Raptor codes. IEEE Trans Inf Theory 52(6):2551–2567

    Article  Google Scholar 

  25. Stockhammer T, Bystrom M (2004) H.264/AVC data partitioning for mobile video communication. In: Proceedings of the international conference on image processing, Singapore, pp 545–548

  26. Stockhammer T, Zia W (2007) Error-resilient coding and decoding strategies for video communication. In: Chou PA, van der Schaar M (eds) Multimedia in IP and wireless networks. Academic Press, Burlington, pp 13–58

    Chapter  Google Scholar 

  27. Sullivan GJ, Wiegand T (2004) Video compression—from concepts to the H.264/AVC standard. Proc IEEE 93(1):18–31

    Article  Google Scholar 

  28. Talari A, Rahnavard N (2009) Unequal error protection rateless coding for efficient MPEG video transmission. In: Proceedings of military communications conference, p 7

  29. Vukobratovic D, Stankovic V, Sejdinovic D, Stankovic L, Ziong Z (2008) Expanding window Fountain codes for scalable video multicast. In: Proceedings of IEEE international conference on multimedia and expo, Hannover, Germany, pp 77–80

  30. Wenger S (2003) H.264/AVC over IP. IEEE Trans Circuits Syst Video Technol 13:645–656

    Article  Google Scholar 

  31. Zorzi M, Rao RR (1997) Error control and energy consumption in communications for nomadic computing. IEEE Trans Comput 46(2):279–289

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Rouzbeh Razavi and Muhammad Altaf for conducting simulations in support of the findings in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fleury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samek, H., Fleury, M. & Ghanbari, M. Robust video communication for ubiquitous network access. Pers Ubiquit Comput 15, 811–820 (2011). https://doi.org/10.1007/s00779-011-0367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-011-0367-3

Keywords

Navigation