Skip to main content

Advertisement

Log in

Performance evaluation of raspberry Pi platform for bioimpedance analysis using least squares optimization

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

One method for analyzing bioimpedance measurements collected from a tissue applies equivalent electrical circuits to represent the data. This typically requires curve-fitting or optimization procedures to determine the circuit parameters of the selected equivalent circuit model that best fit the collected data. This work describes the performance (in terms of accuracy and execution time) of a nonlinear least squares optimization implementation using SciPy on a Raspberry Pi (RPi) for the analysis of simulated bioimpedance measurements, compared to MATLAB implementations of the same method. The SciPy/RPi implementation yielded similar accuracy to the MATLAB counterparts though the execution time ranged from 1.4 × to 2.1 × longer than the MATLAB environments and 10× greater than the same Python implementation running on a desktop or laptop environment. The performance of this optimization implementation on the RPi does support its suitability for further bioimpedance applications and its further use for applications requiring postprocessing in addition to data collection from connected sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cressey D (2017) The DIY electronics transforming research. Nature 544:125–126. 10.1038/544125a

    Article  Google Scholar 

  2. Jones E, Oliphant E, Peterson P et al (2001) SciPy: open source scientific tools for python. http://www.scipy.org/ [Online; accessed 2017-07-31]

  3. Johnston SJ, Cox SJ (2017) The Raspberry Pi: a technology disrupter, and the enabler of dreams. Electronics 6(3):51. https://doi.org/10.3390/electronics6030051

    Article  Google Scholar 

  4. Vujovic V, Maksimovic M (2015) Raspberry Pi as a sensor web node for home automation. Comput Electr Eng 44:153–171

    Article  Google Scholar 

  5. Lewis AJ, Campbell M, Stavroulakis P (2016) Performance evaluation of a cheap, open source, digital environmental monitor based on the Raspberry Pi. Measurement 87:228–235

    Article  Google Scholar 

  6. Kuziek J, Shienh A, Mathewson KE (2017) Transitioning EEG experiments away from the laboratory using a Raspberry Pi 2. J Neurosci Methods 277:75–82

    Article  Google Scholar 

  7. Ambroz M (2017) Raspberry Pi as a low-cost data acquisition system for human powered vehicles. Measurement 100:7–18

    Article  Google Scholar 

  8. Wijnen B, Hunt EJ, Anzalone GC, Pearce JM (2014) Open-source syringe pump library. PLoS One 9(9):e107216. https://doi.org/10.1371/journal.pone.0107216

    Article  Google Scholar 

  9. Tivnan M, Gurjar R, Wolf DE, Vishwanath K (2015) High frequency sampling of TTL pulses on a Raspberry Pi for diffuse correlation spectroscopy applications. Sensors 15:19709–19722. https://doi.org/10.3390/s150819709

    Article  Google Scholar 

  10. Pasquali V, Gualtieri R, D’Allesandro G, et al (2016) Monitoring and analyzing of circadian and ultradian locomotor activity based on Raspberry-Pi. Electronics 5(3):58. https://doi.org/10.3390/electronics5030058

    Article  Google Scholar 

  11. Neethu J, Surya R, Ashwini R, Sachin Kumar S, Soman KP (2015) A low cost implementation of multi-label classification algorithm using Mathematica on Raspberry Pi. Procedia Comput Sci 46:306–313

    Article  Google Scholar 

  12. Grimnes S, Martinsen O (2013) Bioimpedance and bioelectricity basics, 3rd edn. Academic Press, London

    Google Scholar 

  13. Zhu F, Kuhlmann MK, Kotanko P, Seibert E, Leonard EG, Levin NW (2008) A method for the estimation of hydration state during hemodialysis using a calf bioimpedance technique. Physiol Measure 29:S503–S516

    Article  Google Scholar 

  14. Nescolarde L, Yanguas J, Terricabras J, Lukaski H, Alomar X, Rosell-Ferrer J, Rodas GG (2017) Detection of muscle gaps by L-BIA in muscle injuries: clinical prognosis. Physiol Measure 38:L1–L9

    Article  Google Scholar 

  15. York S, Ward LC, Czerniec S, Lee MJ, Refshauge K, Kilbreath SL (2009) Single frequency versus bioimpedance spectroscopy for the assessment of lymphoedema. Breast Cancer Res Treat 117:117–182

    Article  Google Scholar 

  16. Cole KS (1940) Permeability and impermeability of cell membranes for ions. Proc Cold Spring Harbor Symp Quant Biol 8:110–122

    Article  Google Scholar 

  17. Westerlund S, Ekstam L (1994) Capacitor theory. IEEE Trans Dielectr Electr Insul 1(5):826–839

    Article  Google Scholar 

  18. Freeborn TJ, Fu B (2018) Fatigue-induced Cole electrical impedance model changes of biceps tissue bioimpedance. Fractal Fract 4(2):27. https://doi.org/10.3390/fractalfract2040027

    Article  Google Scholar 

  19. Halter RJ, Hartov A, Paulsen KD, Schned A, Heaney J (2008) Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues. Physiol Meas 29:S111–S123

    Article  Google Scholar 

  20. Gholami-Boroujeny S, Bolic M (2016) Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms. Med Biol Eng Computer 54(4):643–651

    Article  Google Scholar 

  21. Yousri DA, AbdelAty AM, Said LA, AboBakr A, Radwan AG (2017) Biological inspired optimization algorithms for cole-impedance parameters identification. Int J Electro Commun 78:79–89

    Article  Google Scholar 

  22. Solmaz H, Ulgen Y, Tumer M (2009) Design of a micro-controller based Cole-Cole impedance meter for testing biological tissues, Proceedings of the World Congr. Med. Phys. Biomed. Eng., Munich, Germany, September 7–9, pp 488–491

  23. Keshtkar A, Salehnia Z, Keshtkar A, Shokouhi B (2012) Bladder cancer detection using electrical impedance technique (tabriz mark 1). Pathol Res Int 470101:5. https://doi.org/10.1155/2012/470101

    Google Scholar 

  24. Piasecki T, Chabowski K, Nitsch K (2016) Design, calibration and tests of versatile low frequency impedance analyser based on ARM microcontroller. Measurement 91:155–161

    Article  Google Scholar 

  25. Villa F, Magnani A, Maggioni MA, Stahn A, Rampichini S, Merati G, Castiglioni P (2016) Wearable multi-frequency and multi-segment bioelectrical impedance spectroscopy for unobtrusive impedance spectroscopy for unobtrusively tracking body fluid shifts during physical activity in real-field applications: a preliminary study. Sensors 16(5):673

    Article  Google Scholar 

  26. Harder R, Diedrich A, Whitfield JS, Buchowski MS, Pietsch JB, Baudenbacher FJ (2016) Smart multi-frequency bioelectrical impedance spectrometer for BIA and BIVA applications. IEEE Trans Biomed Circuits Syst 10(4):912–919

    Article  Google Scholar 

  27. Hafid A, Benouar S, Medir-Talha M, Abtahi F, Attari M, Seoane F (2018) Full impedance cardiography measurement device using Raspberry Pi3 and system-on-chip biomedical instrumentation solutions. IEEE J Biomed Health Info 22(6):1883–1994

    Article  Google Scholar 

  28. Freeborn TJ, Maundy B, Elwakil AS (2014) Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med Biol Eng Compute 52(9):749–758

    Article  Google Scholar 

  29. Freeborn TJ, Elwakil AS, Maundy B (2016) Factors impacting accurate Cole-impedance extractions from magnitude-only measurements, IEEE Conf. Systems Man Cybernetics, pp 223–227, Budapest, Hungary

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd J. Freeborn.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freeborn, T.J. Performance evaluation of raspberry Pi platform for bioimpedance analysis using least squares optimization. Pers Ubiquit Comput 23, 279–285 (2019). https://doi.org/10.1007/s00779-019-01203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-019-01203-6

Keywords

Navigation