Skip to main content

Advertisement

Log in

Associations between children’s family environment, spontaneous brain oscillations, and emotional and behavioral problems

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

The family environment in childhood has a strong effect on mental health outcomes throughout life. This effect is thought to depend at least in part on modifications of neurodevelopment trajectories. In this exploratory study, we sought to investigate whether a feasible resting-state fMRI metric of local spontaneous oscillatory neural activity, the fractional amplitude of low-frequency fluctuations (fALFF), is associated with the levels of children’s family coherence and conflict. Moreover, we sought to further explore whether spontaneous activity in the brain areas influenced by family environment would also be associated with a mental health outcome, namely the incidence of behavioral and emotional problems. Resting-state fMRI data from 655 children and adolescents (6–15 years old) were examined. The quality of the family environment was found to be positively correlated with fALFF in the left temporal pole and negatively correlated with fALFF in the right orbitofrontal cortex. Remarkably, increased fALFF in the temporal pole was associated with a lower incidence of behavioral and emotional problems, whereas increased fALFF in the orbitofrontal cortex was correlated with a higher incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Achenbach TM, Rescorla LA (2001) Manual for the ASEBA school-age forms and profiles. University of Vermont, Research Center for Children, Youth, and Families, Burlington

    Google Scholar 

  2. Aiello M, Salvatore E, Cachia A, Pappatà S, Cavaliere C, Prinster A et al (2015) Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: a PET/MR hybrid scanner study. Neuroimage 113:111–121

    Article  PubMed  Google Scholar 

  3. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65(4):550–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barbas H (2015) General cortical and special prefrontal connections: principles from structure to function. Annu Rev Neurosci 38:269–289

    Article  CAS  PubMed  Google Scholar 

  5. Barrett LF, Simmons WK (2015) Interoceptive predictions in the brain. Nat Rev Neurosci 16:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  7. Biswal BB, Mennes M, Zuo XN et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739

    Article  PubMed  PubMed Central  Google Scholar 

  8. Blair C, Raver CC (2016) Poverty, stress, and brain development: new directions for prevention and intervention. Acad Pediatr 16(3):S30–S36

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brunner M, Nagy G, Wilhelm O (2012) A tutorial on hierarchically structured constructs. J Pers 80(4):796–846

    Article  PubMed  Google Scholar 

  10. Chanes L, Barrett LF (2016) Redefining the role of limbic areas in cortical processing. Trends Cogn Sci 20(2):96–106

    Article  PubMed  Google Scholar 

  11. Cirulli F, Berry A, Alleva E (2003) Early disruption of the mother–infant relationship: effects on brain plasticity and implications for psychopathology. Neurosci Biobehav Rev 27(1):73–82

    Article  CAS  PubMed  Google Scholar 

  12. Cordes D, Haughton VM, Arfanakis K et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR 22:1326–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  14. Davidson RJ, McEwen BS (2012) Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci 15(5):689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies PT, Lindsay LL (2004) Interparental conflict and adolescent adjustment: why does gender moderate early adolescent vulnerability? J Fam Psychol 18(1):160–170

    Article  PubMed  Google Scholar 

  16. Di X, Kim EH, Huang CC, Tsai SJ, Lin CP, Biswal BB (2013) The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity. Front Hum Neurosci 7:118

    PubMed  PubMed Central  Google Scholar 

  17. Di Martino A, Fair DA, Kelly C et al (2014) Unraveling the miswired connectome: a developmental perspective. Neuron 83(6):1335–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fair DA, Dosenbach NU, Church JA et al (2007) Development of distinct control networks through segregation and integration. Proc Natl Acad Sci 104(33):13507–13512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fair DA, Cohen AL, Dosenbach NU et al (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci 105(10):4028–4032

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ferro MA, Boyle MH (2015) The impact of chronic physical illness, maternal depressive symptoms, family functioning, and self-esteem on symptoms of anxiety and depression in children. J Abnorm Child Psychol 43(1):177–187

    Article  PubMed  Google Scholar 

  21. Formoso D, Gonzales NA, Aiken LS (2000) Family conflict and children’s internalizing and externalizing behavior: protective factors. Am J Community Psychol 28:175–199

    Article  CAS  PubMed  Google Scholar 

  22. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  23. Geng X, Li G, Lu Z, Gao W, Wang L, Shen D et al (2017) Structural and maturational covariance in early childhood brain development. Cereb Cortex 27(3):1795–1807

    PubMed  Google Scholar 

  24. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863

    Article  CAS  PubMed  Google Scholar 

  25. Gilmore JH, Shi F, Woolson SL, Knickmeyer RC, Short SJ, Lin W et al (2011) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex 22(11):2478–2485

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goodkind M, Eickhoff SB, Oathes DJ et al (2015) Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72(4):305–315

    Article  PubMed  PubMed Central  Google Scholar 

  27. Graham AM, Pfeifer JH, Fisher PA, Lin W, Gao W, Fair DA (2015) The potential of infant fMRI research and the study of early life stress as a promising exemplar. Dev Cogn Neurosci 12:12–39

    Article  PubMed  Google Scholar 

  28. Graham AM, Pfeifer JH, Fisher PA, Carpenter S, Fair DA (2015) Early life stress is associated with default system integrity and emotionality during infancy. J Child Psychol Psychiatry 56(11):1212–1222

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grayson DS, Fair DA (2017) Development of large-scale functional networks from birth to adulthood: a guide to the neuroimaging literature. NeuroImage 160:15–31

    Article  PubMed  Google Scholar 

  30. Gu S, Satterthwaite TD, Medaglia JD, Yang M, Gur RE, Gur RC, Bassett DS (2015) Emergence of system roles in normative neurodevelopment. Proc Natl Acad Sci 112(44):13681–13686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamilton E, Carr A (2016) Systematic review of self-report family assessment measures. Fam Process 55(1):16–30

    Article  PubMed  Google Scholar 

  32. Han Y, Wang J, Zhao Z et al (2011) Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 55(1):287–295

    Article  PubMed  Google Scholar 

  33. Harold GT, Leve LD, Barrett D, Elam K, Neiderhiser JM, Natsuaki MN, Shaw DS, Reiss D, Thapar A (2013a) Biological and rearing mother influences on child ADHD symptoms: revisiting the developmental interface between nature and nurture. J Child Psychol Psychiatry 54(10):1038–1046. https://doi.org/10.1111/jcpp.12100

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harold GT, Leve LD, Elam KK, Thapar A, Neiderhiser JM, Natsuaki MN, Shaw DS, Reiss D (2013b) The nature of nurture: disentangling passive genotype-environment correlation from family relationship influences on children’s externalizing problems. J Fam Psychol 27(1):12–21. https://doi.org/10.1037/a0031190

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hayes AF (2013) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. The Guilford, New York

    Google Scholar 

  36. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658

    Article  CAS  PubMed  Google Scholar 

  37. Hou J, Wu W, Lin Y et al (2012) Localization of cerebral functional deficits in patients with obsessive–compulsive disorder: a resting-state fMRI study. J Affect Disord 138(3):313–321

    Article  PubMed  Google Scholar 

  38. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL. NeuroImage 62(2):782–790

    Article  PubMed  Google Scholar 

  39. Johnson SB, Riis JL, Noble KG (2016) State of the art review: poverty and the developing brain. Pediatrics, peds-2015

  40. Kaufmann T, Alnæs D, Brandt CL, Doan NT, Kauppi K, Bettella F, Lagerberg TV, Berg AO, Djurovic S, Agartz I, Melle IS, Ueland T, Andreassen OA, Westlye LT (2017) Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. Neuroimage 147:243–252. https://doi.org/10.1016/j.neuroimage.2016.11.073

    Article  PubMed  Google Scholar 

  41. Kieling C, Baker-Henningham H, Belfer M et al (2011) Child and adolescent mental health worldwide: evidence for action. Lancet 378(9801):1515–1525

    Article  PubMed  Google Scholar 

  42. Kim P, Evans GW, Angstadt M et al (2013) Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proc Natl Acad Sci 110(46):18442–18447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kong F, Hu S, Wang X, Song Y, Liu J (2015) Neural correlates of the happy life: the amplitude of spontaneous low frequency fluctuations predicts subjective well-being. Neuroimage 107:136–145

    Article  PubMed  Google Scholar 

  44. Lendval B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404(6780):876

    Article  CAS  Google Scholar 

  45. Leve LD, Kim HK, Pears KC (2005) Childhood temperament and family environment as predictors of internalizing and externalizing trajectories from ages 5 to 17. J Abnorm Child Psychol 33:505–520

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li F, He N, Li Y et al (2014) Intrinsic brain abnormalities in attention deficit hyperactivity disorder: a resting-state functional MR imaging study. Radiology 272(2):514–523

    Article  PubMed  Google Scholar 

  47. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci 3(8):799–806

    Article  CAS  PubMed  Google Scholar 

  48. Liu J, Ren L, Womer FY et al (2014) Alterations in amplitude of low frequency fluctuation in treatment-naïve major depressive disorder measured with resting-state fMRI. Hum Brain Mapp 35(10):4979–4988

    Article  PubMed  PubMed Central  Google Scholar 

  49. Luby J, Belden A, Botteron K, Marrus N, Harms MP, Babb C et al (2013) The effects of poverty on childhood brain development: the mediating effect of caregiving and stressful life events. JAMA Pediatr 167(12):1135–1142

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lucia VC, Breslau N (2006) Family cohesion and children’s behavior problems: a longitudinal investigation. Psychiatry Res 141:141–149

    Article  PubMed  Google Scholar 

  51. Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L et al (2014) Dynamic development of regional cortical thickness and surface area in early childhood. Cereb Cortex 25(8):2204–2212

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maughan A, Cicchetti D (2002) Impact of child maltreatment and interadult violence on children’s emotion regulation abilities and socioemotional adjustment. Child Dev 73(5):1525–1542

    Article  PubMed  Google Scholar 

  53. Meda SA, Wang Z, Ivleva EI et al (2015) Frequency-specific neural signatures of spontaneous low-frequency resting state fluctuations in psychosis: evidence from bipolar-schizophrenia network on intermediate phenotypes (B-SNIP) consortium. Schizophr Bull 41(6):1336–1348

    Article  PubMed  PubMed Central  Google Scholar 

  54. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7(10):818–827

    Article  CAS  PubMed  Google Scholar 

  55. Moos RH, Moos BS (1994) Family environment scale manual. Consulting Psychologists, Palo Alto

    Google Scholar 

  56. Neville HJ, Stevens C, Pakulak E et al (2013) Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proc Natl Acad Sci 110(29):12138–12143

    Article  PubMed  PubMed Central  Google Scholar 

  57. Noble KG, Houston SM, Kan E, Sowell ER (2012) Neural correlates of socioeconomic status in the developing human brain. Dev Sci 15(4):516–527

    Article  PubMed  PubMed Central  Google Scholar 

  58. Noble KG, Houston SM, Brito NH et al (2015) Family income, parental education and brain structure in children and adolescents. Nat Neurosci 18(5):773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Piccolo LR, Merz EC, He X, Sowell ER, Noble KG (2016) Age-related differences in cortical thickness vary by socioeconomic status. PLoS One 11(9):e0162511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Power JD, Fair DA, Schlaggar BL, Petersen SE (2010) The development of human functional brain networks. Neuron 67(5):735–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Repetti RL, Taylor SE, Seeman TE (2002) Risky families: family social environments and the mental and physical health of offspring. Psychol Bull 128(2):330–366

    Article  PubMed  Google Scholar 

  62. Richmond MK, Stocker CM (2006) Associations between family cohesion and adolescent siblings’ externalizing behavior. J Fam Psychol 20:663–669

    Article  PubMed  Google Scholar 

  63. Salum GA, Gadelha A, Pan PM et al (2015) High risk cohort study for psychiatric disorders in childhood: rationale, design, methods and preliminary results. Int J Methods Psychiatr Res 24(1):58–73

    Article  PubMed  Google Scholar 

  64. Satterthwaite TD, Wolf DH, Loughead J et al (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60:623–632

    Article  PubMed  Google Scholar 

  65. Satterthwaite TD, Baker JT (2015) How can studies of resting-state functional connectivity help us understand psychosis as a disorder of brain development? Curr Opin Neurobiol 30:85–91

    Article  CAS  PubMed  Google Scholar 

  66. Sato JR, Salum GA, Gadelha A et al (2014) Age effects on the default mode and control networks in typically developing children. J Psychiatr Res 58:89–95

    Article  PubMed  Google Scholar 

  67. Sato JR, Biazoli CE, Salum GA, Gadelha A, Crossley N, Satterthwaite TD et al (2015) Temporal stability of network centrality in control and default mode networks: specific associations with externalizing psychopathology in children and adolescents. Hum Brain Mapp 36(12):4926–4937

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sato JR, Salum GA, Gadelha A et al (2016) Default mode network maturation and psychopathology in children and adolescents. J Child Psychol Psychiatry. https://doi.org/10.1111/jcpp.12444

    Article  PubMed  Google Scholar 

  69. Sheridan MA, Sarsour K, Jutte D, D’Esposito M, Boyce WT (2012) The impact of social disparity on prefrontal function in childhood. PLoS One 7(4):e35744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shonkoff JP (2012) Leveraging the biology of adversity to address the roots of disparities in health and development. Proc Natl Acad Sci 109(S2):17302–17307

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24(38):8223–8231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sripada RK, Swain JE, Evans GW, Welsh RC, Liberzon I (2014) Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network. Neuropsychopharmacology 39(9):2244–2251

    Article  PubMed  PubMed Central  Google Scholar 

  74. Stalnaker TA, Cooch NK, Schoenbaum G (2015) What the orbitofrontal cortex does not do. Nat Neurosci 18(5):620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tellegen A, Briggs PF (1967) Old wine in new skins: grouping Wechsler subtests into new scales. J Consult Psychol 31(5):499–506

    Article  CAS  PubMed  Google Scholar 

  76. Toga AW, Thompson PM, Sowell ER (2006) Mapping brain maturation. Trends Neurosci 29(3):148–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tost H, Champagne FA, Meyer-Lindenberg A (2015) Environmental influence in the brain, human welfare and mental health. Nat Neurosci 18(10):1421–1431

    Article  CAS  PubMed  Google Scholar 

  78. Uddin LQ, Supekar K, Menon V (2010) Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci 4:21

    PubMed  PubMed Central  Google Scholar 

  79. Van Den Heuvel MP, Pol HEH (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534

    Article  CAS  PubMed  Google Scholar 

  80. Wagner F, Martel MM, Cogo-Moreira H et al (2016) Attention-deficit/hyperactivity disorder dimensionality: the reliable ‘g’ and the elusive ‘s’ dimensions. Eur Child Adolesc Psychiatry 25(1):83–90

    Article  PubMed  Google Scholar 

  81. Wang GZ, Belgard TG, Mao D et al (2015) Correspondence between resting-state activity and brain gene expression. Neuron 88(4):659–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang L, Kong Q, Li K et al (2016) Frequency-dependent changes in amplitude of low-frequency oscillations in depression: a resting-state fMRI study. Neurosci Lett 614:105–111

    Article  CAS  PubMed  Google Scholar 

  83. Wechsler D (1991) Wechsler intelligence scale for children-third edition (WISC-III): manual. Psychological Corporation, San Antonio

    Google Scholar 

  84. Weissman MM, Wickramaratne P, Adams P, Wolk S, Verdeli H, Olfson M (2000) Brief screening for family psychiatric history: the family history screen. Arch Gen Psychiatry 57:675–682

    Article  CAS  PubMed  Google Scholar 

  85. Whittle S, Vijayakumar N, Simmons JG, Dennison M, Schwartz O, Pantelis C et al (2017) Role of positive parenting in the association between neighborhood social disadvantage and brain development across adolescence. JAMA Psychiatry 74:824–832

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wyman PA, Cowen EL, Work WC, Hoyt-Meyers L, Magnus KB, Fagen DB (1999) Caregiving and developmental factors differentiating young at-risk urban children showing resilient versus stress-affected outcomes: a replication and extension. Child Dev 70(3):645–659

    Article  CAS  PubMed  Google Scholar 

  87. Xu K, Liu H, Li H et al (2014) Amplitude of low-frequency fluctuations in bipolar disorder: a resting state fMRI study. J Affect Disord 152–154:237–242

    Article  PubMed  Google Scholar 

  88. Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP (2013) Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage 80:246–262

    Article  PubMed  Google Scholar 

  89. Yan CG, Cheung B, Kelly C et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201

    Article  PubMed  Google Scholar 

  90. Yan X, Brown AD, Lazar M et al (2013) Spontaneous brain activity in combat related PTSD. Neurosci Lett 547:1–5

    Article  CAS  PubMed  Google Scholar 

  91. Yang H, Wu QZ, Guo LT et al (2011) Abnormal spontaneous brain activity in medication-naive ADHD children: a resting state fMRI study. Neurosci Lett 502:89–93

    Article  CAS  PubMed  Google Scholar 

  92. Yu R, Chien YL, Wang HL et al (2014) Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Hum Brain Mapp 35(2):627–637

    Article  PubMed  Google Scholar 

  93. Zou QH, Zhu CZ, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zuo XN, Di Martino A, Kelly C et al (2010) The oscillating brain: complex and reliable. Neuroimage 49(2):1432–1445

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The opinions, hypotheses, conclusions, and recommendations of this study are those of the authors and do not necessarily represent the opinions of the funding agencies. The authors are grateful to FAPESP (grants 2013/10498-6 and 2013/00506-1 to J.R.S. and grant 2013/08531-5 to A.J.) and the National Institute of Developmental Psychiatry for Children and Adolescents, a science and technology institute funded by CNPq and FAPESP (grant 573974/2008-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ricardo Sato.

Ethics declarations

Conflict of interest

Dr. Luis Augusto Rohde has been on the speakers’ bureau/advisory board and/or acted as a consultant for Eli-Lilly, Janssen-Cilag, Novartis, and Shire in the last 3 years. The ADHD and Juvenile Bipolar Disorder Outpatient programs chaired by Dr. Rhode have also received unrestricted educational and research support from the following pharmaceutical companies in the last 3 years: Eli-Lilly, Janssen-Cilag, Novartis, and Shire. Dr. Rohde has also received travel grants from Shire for participation in the 2014 American Physiological Association and 2015 World Federation of ADHD congresses. Finally, he receives authorship royalties from Oxford Press and ArtMed. Dr. Rodrigo Affonseca Bressan has been on the speakers’ bureau/advisory board of AstraZeneca, Bristol, Janssen, and Lundbeck. Dr. Bressan has also received research grants from Janssen, Eli-Lilly, Lundbeck, Novartis, Roche, FAPESP, CNPq, CAPES, Fundação E.J. Safra, and Fundação ABAHDS. He is also a shareholder in Biomolecular Technology Ltd. Dr. Edson Amaro Jr. has received research grants from FAPESP, CNPq, CAPES, Fundação E.J. Safra, and Fundação ABAHDS. Dr. Pedro Pan received a PhD Scholarship from CNPq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, J.R., Biazoli, C.E., Salum, G.A. et al. Associations between children’s family environment, spontaneous brain oscillations, and emotional and behavioral problems. Eur Child Adolesc Psychiatry 28, 835–845 (2019). https://doi.org/10.1007/s00787-018-1240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-018-1240-y

Keywords

Navigation