Skip to main content
Log in

Prokaryotic diversity of a Tunisian multipond solar saltern

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

16S rRNA gene clone libraries were separately constructed from three ponds with different salt concentrations, M2 (15%), TS38 (25%) and S5 (32%), located within a multipond solar saltern of Sfax. The 16S rRNA genes from 216 bacterial clones and 156 archaeal clones were sequenced and phylogenetically analyzed. 44 operational taxonomic units (OTUs) were generated for Bacteria and 67 for Archaea. Phylogenetic groups within the bacterial domain were restricted to Bacteroidetes and Proteobacteria, with the exception that one cyanobacterial OTU was found in the TS38 pond. 85.7, 26.6 and 25.0% of the bacterial OTUs from M2, TS38 and S5 ponds, respectively, are novel. All archaeal 16S rRNA gene sequences were exclusively affiliated with Euryarchaeota. 75.0, 60.0 and 66.7% of the OTUs from, respectively, M2, TS38 and S5 ponds are novel. The result showed that the Tunisian multipond solar saltern harbored novel prokaryotic diversity that has never been reported before for solar salterns. In addition, diversity measurement indicated a decrease of bacterial diversity and an increase of archaeal diversity with rising salinity gradient, which was in agreement with the previous observation for thalassohaline systems. Comparative analysis showed that prokaryotic diversity of Tunisian saltern was higher than that of other salterns previously studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Antón J, Rossello MR, Rodríguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rossello-Mora R (2002) Salinibacter ruber. Gen. nov, sp nov., a new species of extremely halophilic bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    PubMed  Google Scholar 

  • Artiguenave F, Wincker P, Brottier P, Duprat Jovelin F, Scarpelli C, Verdier J, Vico V, Weissenbach J, Saurin W (2000) Genomic exploration of the hemiascomycetous yeast. 2. Data generation and processing. FEBS Lett 487:13–16

    Article  PubMed  CAS  Google Scholar 

  • Belcher R, Gibbons D, West TS (1954) The evaluation of barium sulphate precipitates by a titrimetric method. Chem. Ind 127

  • Benlloch S, Acinas SG, Antón J, Lopez L, Rodriguez-Valera F (2001) Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41:12–19

    PubMed  CAS  Google Scholar 

  • Benlloch S, Lopez A, Emilio C, Goddard V, Rodriguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Article  PubMed  Google Scholar 

  • Bolhuis H, Poele EM, Rodriguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:1287–1291

    Article  PubMed  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicate that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. App Environ Microbiol 70:5258–5265

    Article  CAS  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H., Dyall-Smith MD (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  PubMed  CAS  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  PubMed  CAS  Google Scholar 

  • Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2003) Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl Environ Microbiol 69:7354–7363

    Article  PubMed  CAS  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacterium cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF (1992). Archaea in coastal marine environments. Proc Nalt Acad Sci USA 89:5685–5690

    Article  CAS  Google Scholar 

  • Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northen Chile. FEMS Microbiol Ecol 48:57–69

    Article  CAS  PubMed  Google Scholar 

  • Fendrihan S, Legat A, Pfaffenhuemer M, Gruber C, Weidler G, Gerbl F, Stan-Lotter H (2006) Extremely halophilic Archaea and the issue of long-term microbial survival. Rev Environ Sci Biotechnol 5:203–218

    Article  CAS  Google Scholar 

  • Golterman HL, Clymo RS (1971) Methods for chemical analysis of freshwaters. Blackwell, Oxford, p 166

    Google Scholar 

  • González JM, Kiene RP, Moran MA (1999) Transformation of sulphur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol 65:3810–3819

    PubMed  Google Scholar 

  • Good IJ (1954) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264

    Google Scholar 

  • Harris DC (1997) Quantitative chemical analysis. W.H. Freeman, New York, p 307

    Google Scholar 

  • Hicks RE, Amann RI, Stahl DA (1992) Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rDNA sequences. Appl Environ Microbiol 58:2158–2163

    PubMed  CAS  Google Scholar 

  • Hugenhotz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF (1984) Reassignment of the genus Ectothiorhodospira to a new family, Ectothiorhodospiraceae fam. Nov., and emended description of the Chromatiaceae. Int J Syst Bacteriol 34:338–339

    Article  Google Scholar 

  • Imhoff JF, Suling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113

    Article  PubMed  CAS  Google Scholar 

  • Javor B (2002) Industrial microbiology of solar salt production. J Ind Microbiol Biotechnol 28:42–47

    Article  PubMed  CAS  Google Scholar 

  • Juretschko S, Loy A, Lehner A, Wagner M (2002) The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analysed by the full-cycle rRNA approach. Syst Appl Microbiol 25:84–99

    Article  PubMed  CAS  Google Scholar 

  • Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodrigeuz-Valera F, Papke TR (2006) Environmental genomics of Haloquadratum walsbyi in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7:1–13

    Article  CAS  Google Scholar 

  • Litchfield CD, Gillevet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol 28:48–55

    Article  PubMed  CAS  Google Scholar 

  • Lopez CA, Ochoa JL (1998) The biological significance of Halobacteria on nucleation and sodium chloride crystal growth. In: Dubrowski A (ed.) Absorption and its applications in industry and environmental protection. Studies in surface science and catalysis, vol 120. Elsevier, Amsterdam, pp 903–923

    Google Scholar 

  • Magurran AE (1996) Ecological diversity and its measurement. Chapman and Hall, London, pp 274–286

    Google Scholar 

  • Maturrano L, Santos F, Rossello-Mora R, Anton J (2006) Microbial diversity in Maras saltern, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  PubMed  CAS  Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter rubber: Convergence and gene exchange among hyperhalophilic Bacteria and Archaea. Proc Nalt Acad Sci 102:18147–18152

    Article  CAS  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of Halobacteria within fluid inclusions in salt crystal. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Ochsenreiter T, Pfeifer F, Schleper C (2002) Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267–274

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Truper HG (1990) Anaerobic growth of halophilic archaeobacteria by reducing of dimethylsulfoxide and trimethylamine N-oxide. FEMS Microbiol Lett 70:33–36

    Article  CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Heldal M, Norland S, Svein N, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6:491–498

    Article  PubMed  CAS  Google Scholar 

  • Ovreas L, Daae FL, Torsvik V, Rodrίguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Kang CH, Rhee SK (2006) Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J Microbial Biotechnol 16:1640–1645

    CAS  Google Scholar 

  • Pašić L, Bartual SG, Ulrih NP, Grabnar M, Velikonja BH (2005) Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491–498

    Article  PubMed  CAS  Google Scholar 

  • Pašić L, Ulrih NP, Crnigoj M, Grabnar M, Velikonja BH (2007) Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can J Microbiol 53:8–18

    Article  PubMed  CAS  Google Scholar 

  • Rossello-Mora R, Lee N, Anton J, Wagner M (2003) Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7:409–413

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  PubMed  CAS  Google Scholar 

  • Skoog DA, West DM, Holler FJ (1996) Fundamentals of analytical chemistry, 7th edn, Thomson, USA

    Google Scholar 

  • Sorensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Fowler VJ, Schubert W, Imhoff JF (1984) Towards a phylogeny of phototrophic purple sulfur bacteria-The genus Ectothiorhodospira. Arch Microbiol 137:366–370

    Article  CAS  Google Scholar 

  • Walsby AE (2005) Archaea with square cells. Trends microbiol 13:193–195

    Article  PubMed  CAS  Google Scholar 

  • Won AJ, Chan WK (2005) Proteomics of halophilic Archaea. J Chromatogr 237–250

  • Zheng A, Alm EW, Stahl DA, Raskin L (1996) Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol 62:4504–4513

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Mr. S. Cure for reading the manuscript, Professor A. Rebai (Centre of Biotechnology in Sfax, Tunisia) for constructive discussion, and the technical assistance of the Genoscope sequencing and bioinformatics teams. We thank also the staff of the solar saltern of Sfax for allowing access to the saltern and sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Ammar.

Additional information

Communicated by L. Huang.

A. Sghir and E. Ammar have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baati, H., Guermazi, S., Amdouni, R. et al. Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12, 505–518 (2008). https://doi.org/10.1007/s00792-008-0154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0154-x

Keywords

Navigation