Skip to main content

Advertisement

Log in

Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Permafrost on the Qinghai-Tibet Plateau is one of the most sensitive regions to climate warming, thus characterizing its microbial diversity and community composition may be important for understanding their potential responses to climate changes. Here, we investigated the prokaryotic diversity in a 10-m-long permafrost core from the Qinghai-Tibet Plateau by restriction fragment length polymorphism analysis targeting the 16S rRNA gene. We detected 191 and 17 bacterial and archaeal phylotypes representing 14 and 2 distinct phyla, respectively. Proteobacteria was the dominant bacterial phylum, while archaeal communities were characterized by a preponderance of Thaumarchaeota. Some of prokaryotic phylotypes were closely related to characterized species involved in carbon and nitrogen cycles, including nitrogen fixation, methane oxidation and nitrification. However, the majority of the phylotypes were only distantly related to known taxa at order or species level, suggesting the potential of novel diversity. Additionally, both bacterial α diversity and community composition changed significantly with sampling depth, where these communities mainly distributed according to core horizons. Arthrobacter-related phylotypes presented at high relative abundance in two active layer soils, while the deeper permafrost soils were dominated by Psychrobacter-related clones. Changes in bacterial community composition were correlated with most measured soil variables, such as carbon and nitrogen contents, pH, and conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273–4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayton J, Aislabie J, Barker GM, Saul D, Turner S (2010) Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ Microbiol 12:689–703

    Article  CAS  PubMed  Google Scholar 

  • Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 6:e16626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JP, Nichols DS, McMeekin TA (1997) Psychrobacter glacincola sp. nov., a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215

    Article  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Campbell IB, Claridge GG (2009) Antarctic permafrost soils. In: Margesin R (ed) permafrost soils. Springer, Berlin, pp 17–31

    Chapter  Google Scholar 

  • Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  PubMed  Google Scholar 

  • Chu HY, Neufeld JD, Walker VK, Grogan P (2011) The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Sci Soc Am J 75:1756–1765

    Article  CAS  Google Scholar 

  • Coolen MJ, van de Giessen J, Zhu EY, Wuchter C (2011) Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol 13:2299–2314

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311

    Article  CAS  PubMed  Google Scholar 

  • Graham DE, Wallenstein MD, Vishnivetskaya TA, Waldrop MP, Phelps TJ, Pfiffner SM, Onstott TC, Whyte LG, Rivkina EM, Gilichinsky DA, Elias DA, Mackelprang R, VerBerkmoes NC, Hettich RL, Wagner D, Wullschleger SD, Jansson JK (2012) Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J 6:709–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM, Lomstein BA, Finster KW (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884

    Article  CAS  PubMed  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105:2134–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu WG, Zhang Q, Li DY, Cheng G, Mu J, Wu QB, Niu FJ, An LZ, Feng HY (2014) Diversity and community structure of fungi through a permafrost core profile from the Qinghai-Tibet Plateau of China. J Basic Microbiol 54:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Hu WG, Zhang Q, Tian T, Cheng GD, An LZ, Feng HY (2015) The microbial diversity, distribution, and ecology of permafrost in China: a review. Extremophiles 19:693–705

    Article  PubMed  Google Scholar 

  • Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, Jansson JK (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208–212

    Article  CAS  PubMed  Google Scholar 

  • Jansson JK, TaÅŸ N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425

    Article  CAS  PubMed  Google Scholar 

  • Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert MTP, Zuber MT, Bunce M, Rønn R, Gilichinsky DA, Froese D, Willerslev E (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA 104:14401–14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellermann C, Griebler C (2009) Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int J Syst Evol Microbiol 59:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Hana Yi, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci USA 108:14769–14774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama A, Wallenstein MD, Simpson RT, Moore JC (2014) Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front Microbiol 5:516

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman RM (2007) Microbial distributions and their potential controlling factors in terrestrial subsurface environments. In: Franklin RB, Mills AL (eds) The spatial distribution of microbes in the environment. Springer, Dordrecht, pp 135–178

    Chapter  Google Scholar 

  • Li X, Cheng GD, Jin HJ, Kang ES, Che T, Jin R, Wu LZ, Nan ZT, Wang J, Shen YP (2008) Cryospheric change in China. Glob Planet Change 62:210–218

    Article  Google Scholar 

  • Liebner S, Rublack K, Stuehrmann T, Wagner D (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb Ecol 57:25–35

    Article  PubMed  Google Scholar 

  • Lin XJ, Kennedy D, Fredrickson J, Bjornstad B, Konopka A (2012) Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 14:414–425

    Article  CAS  PubMed  Google Scholar 

  • Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371

    Article  CAS  PubMed  Google Scholar 

  • Männistö MK, Tiirola M, Häggblom MM (2007) Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465

    Article  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim E-H, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514:478–481

    Article  CAS  PubMed  Google Scholar 

  • Mondav R, Woodcroft BJ, Kim EH, McCalley CK, Hodgkins SB, Crill PM, Chanton JP, Hurst GB, VerBerkmoes NC, Saleska SR, Hugenholtz P, Rich VI, Tyson GW (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:3212

    Article  PubMed  Google Scholar 

  • Nemergut DR, Schmidt SK, Fukami T, O′Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen J (2013) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf. Accessed 21 Nov 2015

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J (2008) China: the third pole. Nature 454:393–396

    Article  CAS  PubMed  Google Scholar 

  • Ran YH, Li X, Cheng GD, Zhang TJ, Wu QB, Jin HJ, Jin R (2012) Distribution of permafrost in China: an overview of existing permafrost maps. Permafr Periglac Process 23:322–333

    Article  Google Scholar 

  • Reddy GS, Matsumoto GI, Shivaji S (2003) Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys Antarctica. Int J Syst Evol Microbiol 53:1363–1367

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DF, da C Jesus E, Ayala-del-Río HL, Pellizari VH, Gilichinsky DA, Sepulveda-Torres L, Tiedje JM (2009) Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME J 3:658–665

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Demoling LA, Bahr A, Bååth E (2008) Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol Ecol 63:350–358

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Sawicka JE, Robador A, Hubert C, Jørgensen BB, Brüchert V (2010) Effects of freeze–thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. ISME J 4:585–594

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559

    Article  CAS  PubMed  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    Article  CAS  PubMed  Google Scholar 

  • Shen CC, Ni YY, Liang WJ, Wang JJ, Chu HY (2015) Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol 6:582

    PubMed  PubMed Central  Google Scholar 

  • Souza V, Espinosa-Asuar L, Escalante AE, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodríguez-Martínez JM, Soberón X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA 103:6565–6570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spain AM, Krumholz LR, Elshahed MS (2009) Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 3:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Pollard WH, Greer CW, Whyte LG (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 10:3388–3403

    Article  CAS  PubMed  Google Scholar 

  • Stieglmeier M, Klingl A, Alves RJE, Rittmann SKR, Melcher M, Leisch N, Schleper C (2014) Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 64:2738–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82:326–340

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycle 23:GB2023

    Article  Google Scholar 

  • TaÅŸ N, Prestat E, McFarland JW, Wickland KP, Knight R, Berhe AA, Jorgenson T, Waldrop MP, Jansson JK (2014) Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8:1904–1919

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosi S, Onofri S, Brusoni M, Zucconi L, Vishniac H (2004) Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol 28:470–482

    Article  Google Scholar 

  • Tveit AT, Urich T, Frenzel P, Svenning MM (2015) Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA 112:E2507–E2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky DA, Rivkina E, Vishnivetskaya TA (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Waldrop MP, Wickland KP, White Iii R, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob Change Biol 16:2543–2554

    Google Scholar 

  • Wallenstein MD, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59:428–435

    Article  CAS  PubMed  Google Scholar 

  • Wang B, French HM (1995) Permafrost on the Tibet Plateau, China. Quat Sci Rev 14:255–274

    Article  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren QH, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu CH, Zafar N, Zhou LW, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei SP, Cui HP, He H, Hu F, Su X, Zhu YH (2014) Diversity and distribution of archaea community along a stratigraphic permafrost profile from Qinghai-Tibetan Plateau. China. Archaea 2014:240817

    PubMed  Google Scholar 

  • Wilhelm RC, Radtke KJ, Mykytczuk NC, Greer CW, Whyte LG (2012) Life at the wedge: the activity and diversity of arctic ice wedge microbial communities. Astrobiology 12:347–360

    Article  CAS  PubMed  Google Scholar 

  • Yang DQ, Wang JH, Bai Y, Xu SJ, An LZ (2008) Diversity and distribution of the prokaryotic community in near-surface permafrost sediments in the Tianshan Mountains, China. Can J Microbiol 54:270–280

    Article  CAS  PubMed  Google Scholar 

  • Yang MX, Nelson FE, Shiklomanov NI, Guo DL, Wan GN (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci Rev 103:31–44

    Article  Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL, Déjean S, DeSantis TZ, Gonçalves O, Piceno YM, Andersen GL, Kowalchuk GA (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4:1206–1214

    Article  CAS  PubMed  Google Scholar 

  • Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:52–61

    PubMed  Google Scholar 

  • Zhang XF, Xu SJ, Li CM, Zhao L, Feng HY, Yue GY, Ren ZW, Cheng GD (2014) The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau. Res Microbiol 165:128–139

    Article  CAS  PubMed  Google Scholar 

  • Zinger L, Lejon DPH, Baptist F, Bouasria A, Aubert S, Geremia RA, Choler P (2011) Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape. PLoS One 6:e19950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to other members from Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences for successful field work. This research was supported by funding from the National Basic Research Program (2012CB026105), National Natural Science Foundation (31170482, 31300445, 31370450), PhD Programs Foundation of Ministry of Education (20130211120005), the Chinese Postdoctoral Science Foundation (2013M540780, 2014T70949), Fundamental Research Funds for the Central Universities in China (LZUJBKY-2011-119) and State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences (SKLFSE200901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingbai Wu or Huyuan Feng.

Ethics declarations

The soil samples used in this study were collected in the state-owned land which is open for scientific research. No specified permissions are required for this sampling site, which is not natural reserve and did not involve endangered or protected species.

Conflict of interest

The authors have no substantial financial or commercial conflicts of interest with the current work or its publication.

Additional information

Communicated by A. Oren.

W. Hu and Q. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Rarefaction curves for combined Bacteria and Archaea clone libraries (DOCX 90 kb)

Fig. S2 Phylogenetic analysis of Proteobacteria-related phylotypes (DOCX 201 kb)

792_2016_825_MOESM3_ESM.docx

Fig. S3 Phylogenetic analysis of bacterial phylotypes grouping with the Actinobacteria, Firmicutes and an unclassified phylum (DOCX 123 kb)

Fig. S4 Phylogenetic analysis of bacterial phylotypes grouping with other phyla (DOCX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhang, Q., Tian, T. et al. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 20, 337–349 (2016). https://doi.org/10.1007/s00792-016-0825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0825-y

Keywords

Navigation